K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

b: Ta có: \(-x^2+x+2\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

\(a,x^2+x+1=\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì: \(\left(x+\frac{1}{2}\right)^2\ge0,\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4},\forall x\)

Dấu '' =  '' xảy ra khi : \(x+\frac{1}{2}=0\Rightarrow x=\frac{-1}{2}\)

Vậy GTLN của biểu thức = 3/4 khi x=-1/2

\(b,2+x-x^2=-x^2+x+2\)

\(=-\left(x^2-x-2\right)=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{9}{4}\)

\(=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\)

Vì: \(-\left(x-\frac{1}{2}\right)^2\le0,\forall x\)

\(\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4},\forall x\)

Dấu '' = '' xảy ra khi: x-1/2=0 => x=1/2

Vậy GTNN của biểu thức = 9/4 khi x=1/2

\(c,x^2-4x+1=\left(x^2-2.x.2+4\right)-3=\left(x-2\right)^2-3\)

Vì \(\left(x-2\right)^2\ge0,\forall x\Rightarrow\left(x-2\right)^2-3\ge-3,\forall x\)

Dấu ''='' xảy ra khi x-2=0 => x=2

Vậy GTLN của biểu thức = -3 khi x=2

Các câu khác tương tự

\(d,4x^2+4x+11=\left[\left(2x\right)^2+2.2x.1+1\right]+10=\left(2x+1\right)^2+10\)

Vì \(\left(2x+1\right)^2\ge0,\forall x\Rightarrow\left(2x+1\right)^2+10\ge10,\forall x\)

Dấu ''='' xảy ra khi 2x+1=0 => x=-1/2

Vậy GTNN của biểu thức =10 khi x=-1/2

\(e,3x^2-6x+1=3\left(x^2-2x+1\right)-2=3\left(x-1\right)^2-2\)

Vì \(3\left(x-1\right)^2\ge0,\forall x\Rightarrow3\left(x-1\right)^2-2\ge-2,\forall x\)

Dấu ''='' xảy ra khi x-1=0 => x=1

Vậy GTNN của biểu thức =-2 khi x=1

\(f,x^2-2x+y^2-4y+6=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1\)

Vì \(\left(x-1\right)^2\ge0,\forall x;\left(y-2\right)^2\ge0,\forall y\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+1\ge1,\forall x,y\)

Dấu ''='' xảy ra khi \(\orbr{\begin{cases}x-1=0\\y-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\y=2\end{cases}}}\)

Vậy GTNN của biểu thức =1 khi x=1 và y=2

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

20 tháng 7 2021

a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)

\(=-\left(x+1\right)^2+4\le4\)

Dấu ''='' xảy ra khi x = -1 

Vậy GTLN là 4 khi x = -1 

b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)

\(=-\left(2x-1\right)^2-2\le-2\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy GTLN B là -2 khi x = 1/2 

c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)

\(=-\left(x-1\right)^2-14\le-14\)

Vâỵ GTLN C là -14 khi x = 1

Bài 8 : 

b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 3

Vậy GTNN B là 2 khi x = 3 

c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy ...

c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)

Dấu ''='' xảy ra khi x = 6

Vậy ...

2 tháng 6 2021

`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`

2 tháng 6 2021

16+5=23 :))

18 tháng 10 2020

Trông chán nhỉ :v mấy bài này lm hết rồi mà chả bik vứt đâu :v

a)\(=x^2+\frac{1}{2}.2x+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu "=" xảy ra ⇔ \(x=-\frac{1}{2}\)

(câu này là tìm Min nhé <3)

b) Tương tự câu a đặt dấu -ra ngoài tìm max

c) \(=\left(x^2-4x+4\right)-3\)

\(=\left(x-2\right)^2-3\ge-3\forall x\)

Dấu "=" xảy ra ⇔ x = 2

d) \(=\left(4x^2+4x+1\right)+10\)

\(=\left(2x+1\right)^2+10\ge10\forall x\)

Dấu "=" xảy ra ⇔ x = -1/2

e, Đặt 3 ra ngoài làm tương tự maasy câu trên nhé<3

f, \(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\forall x;y\)

Dấu "=" xảy ra ⇔ x = 1 ;y = 2

6 tháng 11 2021

\(A=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)

\(minA=4\Leftrightarrow x=2\)

\(B=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2\)

\(minB=2\Leftrightarrow x=\dfrac{3}{2}\)

\(C=3\left(x^2+2x+1\right)-8=3\left(x+1\right)^2-8\ge-8\)

\(minC=-8\Leftrightarrow x=-1\)

\(D=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4\le-4\)

\(maxD=-4\Leftrightarrow x=1\)

\(E=-\left(4x^2-6x+\dfrac{9}{4}\right)-\dfrac{11}{4}=-\left(2x-\dfrac{3}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\)

\(maxA=-\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{4}\)

\(F=-2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{55}{8}=-2\left(x-\dfrac{1}{4}\right)^2-\dfrac{55}{8}\le-\dfrac{55}{8}\)

\(maxF=-\dfrac{55}{8}\Leftrightarrow x=\dfrac{1}{4}\)

\(G=\left(x^2-4xy+4y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-2y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(maxG=\dfrac{3}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-\dfrac{1}{2}\end{matrix}\right.\)

\(H=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)+16=-\left(x-1\right)^2-\left(y+2\right)^2+16\le16\)

\(maxH=16\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

8 tháng 11 2021

hk có câu H na bạn?
bạn thiếu câu cuối kìa

13 tháng 7 2021

mọi người ơi giúp mình trả lồi câu hỏi này vớiiiiiiiiiiii

29 tháng 5 2016

a/ 
A=5x-x^2 =-(x^2-5x) = -[(x-5/2)^2 -25/4] = -(x-5/2)^2 +25/4 <= 25/4 

Vậy giá trị lớn nhất là 25/4 khi x=5/2 

b/ B=x-x^2 = -(x^2-x) = -[(x-1/2)^2 -1/4] =-(x-1/2)^2 +1/4 <= 1/4 

Vậy giá trị lớn nhất là 1/4 khi x=1/2 

c/4x-x^2+3 =-(x^2-4x+3) = -[(x-2)^2 -1] =-(x-2)^2 +1 <= 1 
Vậy lớn nhất là 1 khi x=2 

d/-x^2 +6x-11 = -[x^2-6x+11) = -[(x-3)^2 +2] =-(x-3)^2 -2 <= -2 
Vậy lớn nhất là bằng -2 khi x=3 

e/ 5-8x-x^2 =-(x^2 +8x-5) = -[(x+4)^2 -21] = -(x+4)^2 +21 <=21 
Vay lớn nhất là 21 khi x=-4 

f: 4x-x^2+1=-(x^2-4x-1) =-[(x-2)^2 -5] = -(x-2)^2 +5 <= 5 
Vậy lớn nhất bằng 5 khi x=2

29 tháng 5 2016

chờ tí nhé