K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2020

Ta có: \(\frac{HD}{AD}=\frac{S_{HDC}}{S_{ADC}}=\frac{S_{HDB}}{S_{ADB}}=\frac{S_{HDC}+S_{HDB}}{S_{ADC}+S_{ADB}}=\frac{S_{BHC}}{S_{ABC}}\)

Tương tự: \(\frac{HM}{BM}=\frac{S_{AHC}}{S_{ABC}};\frac{HN}{CN}=\frac{S_{AHB}}{S_{ABC}}\)

Từ đó suy ra \(\frac{HD}{AD}+\frac{HM}{BM}+\frac{HN}{CN}=\frac{S_{BHC}+S_{AHC}+S_{AHB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)(1)

Dễ thấy các cặp tam giác: ∆ADB và ∆CNB, ∆ADC và BMC, ∆AMB và ∆ANC đồng dạng với nhau nên: \(\frac{DB}{DC}.\frac{MC}{MA}.\frac{NA}{NB}=\frac{DB}{ NB}.\frac{MC}{DC}.\frac{NA}{MA}=\frac{AB}{BC}.\frac{BC}{AC}.\frac{AC}{AB}=1\)(2)

Từ (1) và (2) suy ra \(\frac{HD}{AD}+\frac{HM}{BM}+\frac{HN}{CN}=\frac{DB}{DC}.\frac{MC}{MA}.\frac{NA}{NB}\)(đpcm)

a: Xét ΔABD vuông tại D và ΔCBA vuông tại A có

góc B chung

=>ΔABD đồng dạng với ΔCBA

=>BA^2=BD*BC

b: IA/ID=BA/BD

MA/MC=BA/BC

=>IA/ID*MA/MC=BA^2/BD*BC=1

a) Xét ΔABC có 

AM là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)

Xét ΔABC có 

BN là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{NC}{NA}=\dfrac{BC}{AB}\)(Tính chất đường phân giác của tam giác)

Xét ΔABC có 

CP là đường phân giác ứng với cạnh AB(gt)

nên \(\dfrac{PA}{PB}=\dfrac{AC}{BC}\)(Tính chất đường phân giác của tam giác)

Ta có: \(\dfrac{MB}{MC}\cdot\dfrac{NC}{NA}\cdot\dfrac{PA}{PB}\)

\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{AB}\cdot\dfrac{AC}{BC}\)

\(=\dfrac{AB\cdot AC\cdot BC}{AB\cdot AC\cdot BC}=1\)(đpcm)

27 tháng 5 2021

a) Dễ thấy tứ giác AMNC nội tiếp đường tròn đường kính MN.

b) Ta có tứ giác AMNC nội tiếp nên \(\angle BCM=\angle BAN\). Suy ra \(\Delta BCM\sim\Delta BAN\left(g.g\right)\).

Từ đó \(\dfrac{BM}{BN}=\dfrac{CM}{AN}\).

c) Gọi P' là trung điểm của MC.

Khi đó P' là tâm của đường tròn ngoại tiếp tứ giác AMNC.

Ta có \(\widehat{AP'N}=2\widehat{ACN}=180^o-2\widehat{ABC}=180^o-\widehat{MON}\). Suy ra tứ giác AONP' nội tiếp.

Từ đó \(P'\equiv P\). Ta có \(OP=OP'=\dfrac{BC}{2}\) (đường trung bình trong tam giác BMC) không đổi khi M di động trên cạnh AB.

1 tháng 5 2023

< Bạn tự vẽ hình nha>

a)Xét ΔABE và  ΔACF, ta có:

góc A: chung

góc F=góc E= 90o

Vậy  ΔABE ∼  ΔACF (g.g)

b)Xét  ΔHEC và  ΔHFB là:

góc H: chung

H1=H2(đối đỉnh)

Vậy  ΔHEC∼ ΔHFB (g.g)

\(\dfrac{HE}{HF}\)=\(\dfrac{HC}{HB}\)⇔HE.HB=HF.HC

<Mình chỉ biết đến đó thôi>bucminh