Chứng minh:
Nếu a,b \(\in Z\) và \(a+5b⋮7\) thì \(10a+b⋮7\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a+5b chia hết cho 7
=>10.(a+5b)chia hết cho 7
=>10a+50b chia hết cho 7
=>(10a+b)+49b chia hết cho 7(1)
Mà 49 chia hết cho 7 nên 49b chia hết cho 7(2)
Từ (1)và(2), ta có: 10a+b chia hết cho 7
Vậy nếu a,b\(\in\)N và a+5b chia hết cho 7 thì 10a+b cũng chia hết cho 7.
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Xét phép trừ:
10(a + 5b) - (10a + b)
= 10a + 50b - 10a - b
= 49b chia hết cho 7 (1)
+ Nếu a + 5b chia hết cho 7 => 10(a + 5b) chia hết cho 7 (2)
Từ (1) và (2) => 10a + b chia hết cho 7
+ Nếu 10a + b chia hết cho 7 (3)
Từ (1) và (3) => 10(a + 5b) chia hết cho 7 => a + 5b chia hết cho 7 (Vì (7; 10) = 1)
Vậy a + 5b chia hết cho 7 khi và chỉ khi 10a + b chia hết cho 7
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
\(\left(a+5b\right)⋮7\Rightarrow10\left(a+5b\right)⋮7\)
\(\Rightarrow\left(10a+50b\right)⋮7\Rightarrow\left(10a+b+49b\right)⋮7\)
Mà \(49b⋮7\Rightarrow\left(10a+b\right)⋮7\)
Đặt a=m5(10a+b) - (a+5b)
= 50a+5b-a-5b
=49a
Do 49 ⋮ 7 => a ⋮ 7 nên
Nếu a=5b ⋮ 7 => 5(10a+b) ⋮ 7,(5,7) =1 => 10+b ⋮ 7 (1)
Nếu 10+b ⋮ 7 => 5(10a+b) ⋮ 7 => a+5b ⋮ 7 (2)
Từ (1) (2) suy ra
nếu a,b thuộc N và a+5b ⋮ 7 thì 10a+b ⋮ 7
Hk tốt
#Ngọc's_Ken'z
Ta có : a+5b chia hết cho 7
=> 4.(a+5b) chia hết cho 5
=> 4a+20b chia hết cho 7
Mà 14a+ 21b chia hết cho 7
=> (14a+21b) - ( 4a+20b)chia hết cho 7
=> 10a+b chia hết cho 7
a) Chứng minh rằng nếu a,b thuộc và a+5b chia hết cho 7 thì 10a + b cung chia het cho 7
b) tìm hai số tự nhiên a và b biết BCNN(a,b)=420: ƯCLN(a,b)=21 và a+21=b
(giup minh voi dang can gap)
Ta có:10(a+5b)-(10a+b)=10a+50b -10a-b
=49b
Như vậy 10(a+5b)-(10a+b) chia hết cho 7
a+5b chia hết cho 7
10(a+5b) chia hết cho 7
=>10a+b chia hết cho 7
Cho xin một tik nha!*chìa tay*
Ta có: a+5b chia hết cho 7
=> 10(a+5b) chia hết cho 7
=> 10a+50b chia hết cho 7
=> 10a+b+49b chia hết cho 7
Mà 49b chia hết cho 7(49 chia hết cho 7)
=> 10a+b chia hết cho 7(điều phải chứng minh)
Ta có: a + 5b chia hết cho 7
=> a chia hết cho 7 và b chia hết cho 7
=>10a +b vẫn chia hết cho 7
Ta có:\(a+5b⋮7\) \(\left(a,b\in Z\right)\)
\(\Rightarrow10\left(a+5b\right)⋮7\Rightarrow10a+50b⋮7\Rightarrow10a+b+49b⋮7\)
Do a,b thuộc Z và \(49b⋮7\) \(\Rightarrow10a+b⋮7\)