Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :a+5b chia hết cho 7
\(\Rightarrow\)10* [a+5b] chia hết 7
Ta có 10*[a+5b]-[10a+b]
\(\Rightarrow\)10a+50b-10a-b
\(\Rightarrow\)49b
Vì 49 chia hết 7 nên 10a+b chia hết cho 7
Vậy ta có điều chứng minh
Gọi 2 số cần tìm lần lượt là a,b.
theo đề bài ta có:
20(a+b)=140(a-b)=7ab
=> \(\frac{20\left(a+b\right)}{140}=\frac{140\left(a-b\right)}{140}=\frac{7ab}{140}\)
=>\(\frac{a+b}{7}=\frac{a-b}{1}=\frac{ab}{20}\)(1)
theo t/c của dãy ..... ta có:
\(\frac{a+b}{7}=\frac{a-b}{1}=\frac{ab}{20}=\frac{a+b+a-b}{7+1}=\frac{2a}{8}=\frac{a}{4}\)
Do đó:
\(\frac{ab}{20}=\frac{a}{4}\)
=> 4ab=20a
=> b=20a:4a=5
thay b=5 vào (1) ta được
bạn tự thay rồi tính tiếp.
b)
ta có:
a+5b\(⋮\)7
=> 10a+50b\(⋮7\)
=>\(\left(10a+b\right)+49b⋮7\)
=>10+b\(⋮7\) vì 49b\(⋮7\)
vậy ...
Xét tổng:
(5a-4b)+4(2a+b)=5a-4b+8a+4b
<=>(5a-4b)+4(2a+b)=13a
Ta có : 13 chia hết cho 13 => 13a chia hết cho 13 với mọi a thuộc Z
=> [(5a-4b)+4(2a+b)] chia hết cho 13 (1)
Ta có (5a-4b) chia hết cho 13 - Bài cho (2)
Từ (1) ; (2) => 4(2a+b) chia hết cho 13
mà (4,13) =1
=> (2a+b) chia hết cho 14
Do đó nếu (5a-4b) chia hết cho 13 thì (2a+b) chia hết cho 13
ta có: P(x) chia hết cho 7 với mọi x
=> Xét TH: P(0) = a.02 +b.0 + c = 0 + c => c chia hết cho 7
P(1) = a.12 + b.1 + c = a + b + c => a + b + c chia hết cho 7
mà c chia hết cho 7 (cmt)
=> a + b chia hết cho 7 (*)
P(-1) = a.(-1)2 + b.(-1) + c = a - b + c chia hết cho 7 => a - b chia hết cho 7 ( do c chia hết cho 7)
=> a + b + a - b chia hết cho 7
=> 2a chia hết cho 7
=> a chia hết cho 7 ( do 2 không chia hết cho 7)
mà a+ b chia hết cho 7
=> b chia hết cho 7
Ta có : a+5b chia hết cho 7
=> 4.(a+5b) chia hết cho 5
=> 4a+20b chia hết cho 7
Mà 14a+ 21b chia hết cho 7
=> (14a+21b) - ( 4a+20b)chia hết cho 7
=> 10a+b chia hết cho 7