\(1\dfrac{1}{3}\cdot1\dfrac{1}{8}\cdot1\dfrac{1}{15}\cdot....\cdot1\dfrac{1}{99}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{2016}\right)\left(1-\dfrac{1}{2017}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}...\dfrac{2015}{2016}.\dfrac{2016}{2017}=\dfrac{1}{2017}\)
Giải:
\(A=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{2016}\right).\left(1-\dfrac{1}{2017}\right)\)
\(\Leftrightarrow A=\dfrac{1}{2}.\dfrac{2}{3}...\dfrac{2015}{2016}.\dfrac{2016}{2017}\)
\(\Leftrightarrow A=\dfrac{1.2...201.2016}{2.3...2016.2017}\)
\(\Leftrightarrow A=\dfrac{1.2.3...2015.2016}{2017.2.3...2015.2016.}\)
Rút gọ cả tử và mẫu với 2.3...2015.2016, ta được:
\(A=\dfrac{1}{2017}\)
Vậy \(A=\dfrac{1}{2017}\).
Chúc bạn học tốt!
\(=\dfrac{1}{99\cdot97}-\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{95\cdot97}\right)\)
\(=\dfrac{1}{99\cdot97}-\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{95\cdot97}\right)\)
\(=\dfrac{1}{99\cdot97}-\dfrac{1}{2}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{95}-\dfrac{1}{97}\right)\)
\(=\dfrac{1}{99\cdot97}-\dfrac{48}{97}=\dfrac{1-48\cdot99}{97\cdot99}=\dfrac{-4751}{9603}\)
\(Q=\dfrac{-2015}{2016}\cdot\left(-50\right)\cdot\dfrac{-153}{154}\cdot1\dfrac{1}{2015}\cdot20\%\)
\(=\dfrac{-2015}{2016}\cdot\left(-50\right)\cdot\dfrac{-153}{154}\cdot\dfrac{2016}{2015}\cdot\dfrac{1}{5}\\ =\left(-\dfrac{2015}{2016}\cdot\dfrac{2016}{2015}\right)\cdot\left(-50\cdot\dfrac{1}{5}\right)\cdot-\dfrac{153}{154}\\ =\left(-1\right)\cdot\left(-10\right)\cdot\left(-\dfrac{153}{154}\right)\\ =10\cdot\left(-\dfrac{153}{154}\right)\\ =-\dfrac{1530}{154}\\ =-\dfrac{765}{77}\)
\(A=\dfrac{1}{99.100}-\dfrac{1}{98.99}-....-\dfrac{1}{3.2}-\dfrac{1}{2.1}\\ =-\left(-\dfrac{1}{99.100}+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{98.99}\right)\\ =-\left(-\dfrac{1}{99.100}+\dfrac{98}{99}\right)\\ =\dfrac{1}{99.100}-\dfrac{98}{99}\\ =\dfrac{1}{99}\left(\dfrac{1}{100}-98\right)=\dfrac{-9799}{9900}\)
\(C=\dfrac{1}{100}-\dfrac{1}{100\cdot99}-\dfrac{1}{99\cdot98}-\dfrac{1}{98\cdot97}-...-\dfrac{1}{3\cdot2}-\dfrac{1}{2\cdot1}\)
\(C=\dfrac{1}{100}-\left(\dfrac{1}{2\cdot1}+\dfrac{1}{3\cdot2}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\right)\)
\(C=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(C=\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)
\(C=\dfrac{1}{100}-\dfrac{99}{100}=\dfrac{-98}{100}=-\dfrac{49}{50}\)
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\frac{99}{100}\)
\(C=-\frac{98}{100}=-\frac{49}{50}\)
Sửa đề: \(\dfrac{1}{99.97}-\dfrac{1}{97.95}-\dfrac{1}{95.93}-...-\dfrac{1}{3.1}\)
\(=\dfrac{1}{97.99}-\left(\dfrac{1}{1.3}+...+\dfrac{1}{93.95}+\dfrac{1}{95.97}\right)\)
\(=\dfrac{1}{97.99}-\dfrac{1}{2}\left(\dfrac{2}{1.3}+...+\dfrac{2}{93.95}+\dfrac{2}{95.97}\right)\)
\(=\dfrac{1}{97.99}-\dfrac{1}{2}\left(1-\dfrac{1}{3}+...+\dfrac{1}{93}-\dfrac{1}{95}+\dfrac{1}{95}-\dfrac{1}{97}\right)\)
\(=\dfrac{1}{97.99}-\dfrac{1}{2}\left(1-\dfrac{1}{97}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{2}{97.99}\right)-\dfrac{1}{2}.\dfrac{96}{97}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{97}-\dfrac{1}{99}\right)-\dfrac{48}{97}\)
.........................
\(\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7} +.....................+\dfrac{1}{97}+\dfrac{1}{99}}{\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+....+\dfrac{1}{97.3}+\dfrac{1}{99.1}}\)
\(=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(\dfrac{1}{3}+\dfrac{1}{97}\right)+..........+\left(\dfrac{1}{49}+\dfrac{1}{51}\right)}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+.......+\dfrac{1}{49.51}\right)}\)
\(=\dfrac{\dfrac{100}{1.99}+\dfrac{100}{3.97}+...........+\dfrac{100}{49.51}}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+...........+\dfrac{1}{49.51}\right)}\)
\(=\dfrac{100\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+.............+\dfrac{1}{49.51}\right)}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+..........+\dfrac{1}{49.51}\right)}\)
\(=\dfrac{100}{2}\)
\(=50\)
\(\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+.....+\dfrac{1}{97}+\dfrac{1}{99}}{\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{97.3}+\dfrac{1}{99.1}}=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(\dfrac{1}{3}+\dfrac{1}{97}\right)+....+\left(\dfrac{1}{49}+\dfrac{1}{51}\right)}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+.....+\dfrac{1}{49.51}\right)}=\dfrac{\dfrac{100}{99}+\dfrac{100}{3.97}+....+\dfrac{100}{49.51}}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+....+\dfrac{1}{49.51}\right)}=\dfrac{100}{2}=50\)
\(1\dfrac{1}{3}.1\dfrac{1}{8}.1\dfrac{1}{15}......1\dfrac{1}{99}\)
\(=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.....\dfrac{100}{99}\)
\(=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}.\dfrac{4.4}{3.5}.....\dfrac{10.10}{9.11}\)
\(=\dfrac{2.2.3.3.4.4.....10.10}{1.3.2.4.3.5.....9.11}\) ( Bước này bạn bỏ đi cũng được )
\(=\dfrac{\left(2.3.4.....10\right).\left(2.3.4.....10\right)}{\left(1.2.3.....9\right).\left(3.4.5.....11\right)}\)
\(=\dfrac{\left(2.3.4.....9\right).10.2.\left(3.4.5.....10\right)}{1.\left(2.3.4.....9\right).\left(3.4.5.....10\right).11}\)
\(=\dfrac{10.2}{1.11}=\dfrac{20}{11}=1\dfrac{9}{11}\)
\(1\dfrac{1}{3}.1\dfrac{1}{8}.1\dfrac{1}{15}.....1\dfrac{1}{99}\)
\(=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.....\dfrac{100}{99}\)
\(=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}.\dfrac{4.4}{3.5}.....\dfrac{10.10}{9.11}\)
\(=\dfrac{2.2.3.3.4.4.....10.10}{1.3.2.4.3.5....9.11}\)
\(=\dfrac{2.3.4....10}{1.2.3....9}.\dfrac{2.3.4...10}{3.4.5....11}\)
\(=10.\dfrac{2}{11}=\dfrac{20}{11}\)