K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

\(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{2016}\right)\left(1-\dfrac{1}{2017}\right)\)

\(=\dfrac{1}{2}.\dfrac{2}{3}...\dfrac{2015}{2016}.\dfrac{2016}{2017}=\dfrac{1}{2017}\)

24 tháng 7 2017

Giải:

\(A=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{2016}\right).\left(1-\dfrac{1}{2017}\right)\)

\(\Leftrightarrow A=\dfrac{1}{2}.\dfrac{2}{3}...\dfrac{2015}{2016}.\dfrac{2016}{2017}\)

\(\Leftrightarrow A=\dfrac{1.2...201.2016}{2.3...2016.2017}\)

\(\Leftrightarrow A=\dfrac{1.2.3...2015.2016}{2017.2.3...2015.2016.}\)

Rút gọ cả tử và mẫu với 2.3...2015.2016, ta được:

\(A=\dfrac{1}{2017}\)

Vậy \(A=\dfrac{1}{2017}\).

Chúc bạn học tốt!

1: \(S=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{101}{100}=\dfrac{101}{2}\)

2: \(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2006}{2007}=\dfrac{1}{2007}\)

18 tháng 3 2017

a)

\(A=\dfrac{3}{4}.\dfrac{8}{9}...\dfrac{9999}{10000}\)

\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}...\dfrac{99.101}{100.100}\)

\(=\dfrac{1.2...99}{2.3...100}.\dfrac{3.4...101}{2.3...100}\)

\(=\dfrac{1}{100}.\dfrac{101}{2}\)

\(=\dfrac{101}{200}\)

18 tháng 3 2017

ai bít câu b.c ko

Bài 2: 

a: \(=44\cdot82-400+18\cdot44\)

\(=44\cdot100-400=4400-400=4000\)

b: \(=6^2:\left\{780:\left[390-125\cdot49+65\right]\right\}\)

\(=36:\left\{780:\left[-5670\right]\right\}\)

\(=36:\dfrac{-26}{189}=\dfrac{-3402}{13}\)

14 tháng 5 2017

\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right).........................\left(\dfrac{1}{99}-1\right)\left(\dfrac{1}{100}-1\right)\)

\(A=\left(\dfrac{1}{2}-\dfrac{2}{2}\right)\left(\dfrac{1}{3}-\dfrac{3}{3}\right)\left(\dfrac{1}{4}-\dfrac{4}{4}\right)................\left(\dfrac{1}{99}-\dfrac{99}{99}\right)\left(\dfrac{1}{100}-\dfrac{100}{100}\right)\)

\(A=\left(\dfrac{-1}{2}\right)\left(\dfrac{-2}{3}\right)\left(\dfrac{-3}{4}\right)...................\left(\dfrac{-98}{99}\right)\left(\dfrac{-99}{100}\right)\)

\(A=\dfrac{\left(-1\right)\left(-2\right)\left(-3\right).........................\left(-98\right)\left(-99\right)}{2.3.4....................98.99.100}\)

\(A=\dfrac{-1}{100}\)

14 tháng 5 2017

Ta có

A = \(\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)....\left(\dfrac{1}{99}-1\right).\left(\dfrac{1}{100}-1\right)\)(99 thừa số)

A = \(\dfrac{-1}{2}.\dfrac{-2}{3}.\dfrac{-3}{4}....\dfrac{-98}{99}.\dfrac{-99}{100}\)

A = \(\dfrac{\left(-1\right).\left(-2\right).\left(-3\right)....\left(-98\right).\left(-99\right).\left(-100\right)}{2.3.4....98.99.100}\)

A = \(\dfrac{\left(-1\right).\left(-1\right).\left(-1\right)....\left(-1\right)}{1.1.1...1.1.1}\) (100 số -1, 99 số 1)

A = \(\dfrac{-1}{1.1.1.1...1.1.1}\)

A = \(\dfrac{-1}{1}\)

A = -1

Vậy A = -1

21 tháng 4 2023

Biến đổi thừa số tổng quát: \(1+\dfrac{1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{\left(k-1\right)\left(k+1\right)+1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{k^2}{\left(k-1\right)\left(k+1\right)}\).

Do đó \(1+\dfrac{1}{1.3}=\dfrac{2^2}{1.3}\)\(1+\dfrac{1}{2.4}=\dfrac{3^2}{2.4}\)\(1+\dfrac{1}{3.5}=\dfrac{4^2}{3.5}\),..., \(1+\dfrac{1}{2018.2020}=\dfrac{2019^2}{2018.2020}\)\(1+\dfrac{1}{2019.2021}=\dfrac{2020^2}{2019.2021}\). Từ đó suy ra \(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{2019.2021}\right)\) 

\(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{5^2}{4.6}.\dfrac{6^2}{5.7}...\dfrac{2019^2}{2018.2020}.\dfrac{2020^2}{2019.2021}\)

\(=\dfrac{2.2020}{2021}=\dfrac{4040}{2021}\)

13 tháng 4 2017

\(Q=\dfrac{-2015}{2016}\cdot\left(-50\right)\cdot\dfrac{-153}{154}\cdot1\dfrac{1}{2015}\cdot20\%\)

\(=\dfrac{-2015}{2016}\cdot\left(-50\right)\cdot\dfrac{-153}{154}\cdot\dfrac{2016}{2015}\cdot\dfrac{1}{5}\\ =\left(-\dfrac{2015}{2016}\cdot\dfrac{2016}{2015}\right)\cdot\left(-50\cdot\dfrac{1}{5}\right)\cdot-\dfrac{153}{154}\\ =\left(-1\right)\cdot\left(-10\right)\cdot\left(-\dfrac{153}{154}\right)\\ =10\cdot\left(-\dfrac{153}{154}\right)\\ =-\dfrac{1530}{154}\\ =-\dfrac{765}{77}\)

25 tháng 4 2017

\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{100}-1\right)\)

\(=\left(\dfrac{-1}{2}\right).\left(\dfrac{-2}{3}\right).\left(\dfrac{-3}{4}\right)...\left(\dfrac{-99}{100}\right)\) ( 99 phân số )

\(=\dfrac{\left(-1\right)\left(-2\right)\left(-3\right)...\left(-99\right)}{2.3.4...100}=\dfrac{-1}{100}\)

Vậy \(A=\dfrac{-1}{100}\)