1.Viết các đa thức sau dưới dạng bình phương của một tổng hoặc một hiệu a)1/4a^2+2ab+4b^4. b)1/9-1/3y^4+y^8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-6x+9=x^2-2.3x+3^2=\left(x-3\right)^2\)
\(\frac{1}{4}a^2+2ab^2+4b^4=\left(\frac{1}{2}a\right)^2+2.\frac{1}{2}a.2b^2+\left(2b\right)^2=\left(\frac{1}{2}a+2b\right)^2\)
\(25+10x+x^2=5^2+2.5x+x^2=\left(5+x\right)^2\)
\(\frac{1}{9}-\frac{2}{3}y^4+y^8=\left(\frac{1}{3}\right)^2-2.\frac{1}{3}y^4+\left(y^4\right)^2=\left(\frac{1}{3}-y^4\right)^2\)
a) 9x2 – 6x + 1
= (3x)2 – 2.3x.1 + 12
= (3x – 1)2 (Áp dụng hằng đẳng thức (2) với A = 3x; B = 1)
b) (2x + 3y)2 + 2.(2x + 3y) + 1
= (2x + 3y)2 + 2.(2x + 3y).1 + 12
= [(2x + 3y) +1]2 (Áp dụng hằng đẳng thức (1) với A = 2x + 3y ; B = 1)
= (2x + 3y + 1)2
c) Đề bài tương tự:
Viết các đa thức sau dưới dạng bình phương của một tổng hoặc hiệu :
4x2 – 12x + 9
(2a + b)2 – 4.(2a + b) + 4.
\(\left(2x+3y\right)^2+2\left(2x+3y\right)+1=\left[\left(2x+3y\right)+1\right]^2=\left(2x+3y+1\right)^2.\)
\(A=9x^2-6x+1\)
\(=\left(3x\right)^2-2.3x.1+1^2\)
\(=\left(3x-1\right)^2\)
\(B=\)\(\left(2x+3y\right)^2+\left(2x+3y\right)+1\)
\(=\left[\left(2x+3y\right)^2+2.\left(2x+3y\right).\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{3}{4}\)
\(=\left(2x+3y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
\(\left(2x+3y\right)^2+2\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)
a:Sửa đề: \(\dfrac{1}{4}a^2+2ab+4b^2\)
\(=\left(\dfrac{1}{2}a\right)^2+2\cdot\dfrac{1}{2}a\cdot2b+\left(2b\right)^2\)
\(=\left(\dfrac{1}{2}a+2b\right)^2\)
b: Sửa đề:\(y^4-\dfrac{1}{3}y^4+\dfrac{1}{36}\)
\(=y^8-2\cdot y^4\cdot\dfrac{1}{6}+\dfrac{1}{36}\)
\(=\left(y^4-\dfrac{1}{6}\right)^2\)