K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

\(x^2-6x+9=x^2-2.3x+3^2=\left(x-3\right)^2\)

\(\frac{1}{4}a^2+2ab^2+4b^4=\left(\frac{1}{2}a\right)^2+2.\frac{1}{2}a.2b^2+\left(2b\right)^2=\left(\frac{1}{2}a+2b\right)^2\)

\(25+10x+x^2=5^2+2.5x+x^2=\left(5+x\right)^2\)

\(\frac{1}{9}-\frac{2}{3}y^4+y^8=\left(\frac{1}{3}\right)^2-2.\frac{1}{3}y^4+\left(y^4\right)^2=\left(\frac{1}{3}-y^4\right)^2\)

24 tháng 6 2018

a,(x-3)^2

b,(1/4x+2b^2)^2

c,(5+x)^2

d,(1/3-y^4)^2

3 tháng 7 2016

Khó nhỉ

24 tháng 9 2021

a. x2 + 6x + 9 = (x + 3)2

b. 25 + 10x + x2 = (5 + x)2

c. x2 + 8x + 16 = (x + 4)2

d. x2 + 14x + 49 = (x + 7)2

e. 4x2 + 12x + 9 = (2x + 3)2

f. 9x2 + 12x + 4 = (3x + 2)2

h. 16x2 + 8 + 1 = (4x + 1)2

i. 4x2 + 12xy + 9y2 = (2x + 3y)2

k. 25x2 + 20xy + 4y2 = (5x + 2y)2

24 tháng 9 2021

a) \(=\left(x+3\right)^2\)

b) \(=\left(x+5\right)^2\)

c) \(=\left(x+4\right)^2\)

d) \(=\left(x+7\right)^2\)

e) \(=\left(2x+3\right)^2\)

f) \(=\left(3x+2\right)^2\)

h) \(=\left(4x+1\right)^2\)

i) \(=\left(2x+3y\right)^2\)

k) \(=\left(5x+2y\right)^2\)

a:Sửa đề: \(\dfrac{1}{4}a^2+2ab+4b^2\)

\(=\left(\dfrac{1}{2}a\right)^2+2\cdot\dfrac{1}{2}a\cdot2b+\left(2b\right)^2\)

\(=\left(\dfrac{1}{2}a+2b\right)^2\)

b: Sửa đề:\(y^4-\dfrac{1}{3}y^4+\dfrac{1}{36}\)

\(=y^8-2\cdot y^4\cdot\dfrac{1}{6}+\dfrac{1}{36}\)

\(=\left(y^4-\dfrac{1}{6}\right)^2\)

19 tháng 8 2019

\(x^2-6x+9=\left(x-3\right)^2\)

\(\frac{1}{4}a^2+2ab+4b^2=\left(\frac{1}{2}a+b\right)^2\)

\(25+10x+x^2=\left(x+5\right)^2\)

\(\frac{1}{9}-\frac{2}{3}y^4+y^8=\left(y^4-\frac{1}{3}\right)^2\)

25 tháng 10 2021

\(a,=\left(x^2y+3\right)^2\\ b,=\left(2x+y\right)^2\\ c,=\left(5y^2-1\right)^2\)

25 tháng 10 2021

a) \(6x^2y+9+x^4y^2=\left(x^2y+3\right)^2\)

b) \(-4xy+4x^2+y^2=\left(2x-y\right)^2\)

c) \(25y^4-10y^2+1=\left(5y^2-1\right)^2\)

9 tháng 9 2021
25+10x+x^2 =5^2+2.5.x+x^2 =(5+x)^2 9-6x+x^2 =3^2-2.3.x+x^2 =(3-x)^2 x^2-x+1/4 =x^2-2.x.1/2+(1/2)^2 =(x-1/2)^2

\(x^2-6x+9=\left(x-3\right)^2\)

\(25+10x+x^2=\left(5+x\right)^2\)

\(\frac{1}{4}a^2+2ab^2+4b^4=\left(\frac{1}{2}a+2b^2\right)^2\)

\(\frac{1}{9}-\frac{2}{3}y^4+y^8=\left(\frac{1}{3}-y^4\right)^2\)

\(\left(3x+2\right)^2-4=\left(3x+2-2\right)\left(3x+2+2\right)=3x\left(3x+4\right)\)

\(4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)

\(4x^2-49=\left(2x-7\right)\left(2x+7\right)\)

\(8z^3+27=\left(2z+3\right)\left(4z^2-6z+9\right)\)

\(\frac{9}{25}x^4-\frac{1}{4}=\left(\frac{3}{5}x^2-\frac{1}{2}\right)\left(\frac{3}{5}x^2+\frac{1}{2}\right)\)

5 tháng 7 2023

\(25x^2-10xy+y^2=\left(5x\right)^2-2.5x.y+y^2=\left(5x-y\right)^2\)

\(\dfrac{4}{9}x^2+\dfrac{20}{3}xy+25y^2=\left(\dfrac{2}{3}x\right)^2+2.\dfrac{2}{3}x.5y+\left(5y\right)^2=\left(\dfrac{2}{3}x+5y\right)^2\)

 

19 tháng 3 2018

a) 9x2 – 6x + 1

= (3x)2 – 2.3x.1 + 12

= (3x – 1)2 (Áp dụng hằng đẳng thức (2) với A = 3x; B = 1)

b) (2x + 3y)2 + 2.(2x + 3y) + 1

= (2x + 3y)2 + 2.(2x + 3y).1 + 12

= [(2x + 3y) +1]2 (Áp dụng hằng đẳng thức (1) với A = 2x + 3y ; B = 1)

= (2x + 3y + 1)2

c) Đề bài tương tự:

Viết các đa thức sau dưới dạng bình phương của một tổng hoặc hiệu :

4x2 – 12x + 9

(2a + b)2 – 4.(2a + b) + 4.