K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

A\(=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^2\right)+\left(-4n^3+16n\right)\)

\(=n^2\left(n^2-4\right)-4n\left(n^2-4\right)\)

\(=n\left[\left(n^2-4\right)\left(n-4\right)\right]\)

\(n.\left(n+2\right)\left(n-2\right)\left(n-4\right)\)

Ta có: tích 4 số chắn liên tiếp chia hết cho 384

=> đpcm

25 tháng 6 2017

n chẵn => n=2k

\(\Rightarrow A=\left(2k\right)^4-4.\left(2k\right)^3-4\left(2k\right)^2+16.2k\\ =16k^4-32k^3-16k^2+32k\\ =16k^3\left(k-2\right)-16k\left(k-2\right)\\ =\left(k-2\right)\left(16k^3-16k\right)\\ =\left(k-2\right)\left(16k\left(k^2-1\right)\right)\\ =16.\left(k-2\right)\left(k-1\right).k.\left(k+1\right)\\ \)

Tích 4 số tự nhiên liên tiếp luôn chia hết cho 3;8 nên chia hết cho 24

\(\Rightarrow A⋮16.24\\ \Rightarrow A⋮384\)

28 tháng 11 2022

n^4-4n^3-4n^2+16n

=n^3(n-4)-4n(n-4)

=n(n-2)(n+2)(n-4)

=2k(2k-2)(2k+2)(2k-4)

=16k(k-1)(k+1)(k-2)

Vì k-2;k-1;k;k+1 là 4 số liên tiếp

nên k(k-1)(k+1)(k-2) chia hết cho 4!=24

=>A chia hết cho 384

9 tháng 10 2019

Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath

Ta phân tích biểu thức đã cho ra nhân tử :

A=n4−4n3−4n2+16nA=n4−4n3−4n2+16n

=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)

=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)

Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : A=(2k+2)(2k)(2k+4)(2k−2)A=(2k+2)(2k)(2k+4)(2k−2)

=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)

Ta nhận thấy (k−1)(k)(k+1)(k+2)(k−1)(k)(k+1)(k+2)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24

Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm

13 tháng 9 2019

Ta phân tích biểu thức đã cho ra nhân tử :

\(A=n^4-4n^3-4n^2+16n\)

\(=\left[n^4-4n^3\right]-\left[4n^2-16n\right]=n^3(n-4)-4n(n-4)\)

\(=n(n-4)\left[n^2-4\right]=n(n-2)(n+2)(n-4)\)

Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : \(A=(2k+2)(2k)(2k+4)(2k-2)\)

\(=16k(k-1)(k+1)(k+2)=16(k-1)(k)(k+1)(k+2)\)

Ta nhận thấy \((k-1)(k)(k+1)(k+2)\)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24

Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm

30 tháng 11 2016

Mình làm gọn 1 xíu nhé

Ta có

\(x^4-4x^3-4x^2+16x=\left(x-4\right)\left(x-2\right)x\left(x+2\right)\)

Đây là tích của 4 số chẵn liên tiếp nên sẽ có 2 số chia hết cho 2, 1số chia hết cho 4, 1 số chia hết cho 8. Nên tích này chia hết cho 27.

Trong 3 số chẵn liên tiếp sẽ có 1 số chia hết cho 3

Vì 3 và 27 là nguyên tố cùng nhau nên

Tích chia hết cho 3.27 = 384

10 tháng 7 2021

Đặt A=n4−4n3−4n2+16n

=n(n3−4n2−4n+16)

=n(n−4)(n2−4)

=(n−4)(n−2)n(n+2)=(n−4)(n−2)n(n+2) (1)(1)

Thế n=2kn=2k (k∈Z+)(k∈Z+) vào (1)(1) được:

    n4−4n3−4n2+16nn4−4n3−4n2+16n

=(2k−4)(2k−2)2k(2k+2)=(2k−4)(2k−2)2k(2k+2)

=16.(k−2)(k−1)k(k+1)=16.(k−2)(k−1)k(k+1) (2)(2)

Do (k−2)(k−1)k(k+1)(k−2)(k−1)k(k+1) là 44 số nguyên liên tiếp nên nên tích này luôn chia hết cho 33 và 88, mà ƯC(8,3)=1ƯC(8,3)=1

=>(k−2)(k−1)k(k+1)=>(k−2)(k−1)k(k+1) ⋮⋮ 2424 (3)(3)

Từ (2)(2) và (3)=>(n4−4n3−4n2+16n)(3)=>(n4−4n3−4n2+16n) ⋮⋮ 384384 (đpcm)