K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

A\(=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^2\right)+\left(-4n^3+16n\right)\)

\(=n^2\left(n^2-4\right)-4n\left(n^2-4\right)\)

\(=n\left[\left(n^2-4\right)\left(n-4\right)\right]\)

\(n.\left(n+2\right)\left(n-2\right)\left(n-4\right)\)

Ta có: tích 4 số chắn liên tiếp chia hết cho 384

=> đpcm

25 tháng 6 2017

n chẵn => n=2k

\(\Rightarrow A=\left(2k\right)^4-4.\left(2k\right)^3-4\left(2k\right)^2+16.2k\\ =16k^4-32k^3-16k^2+32k\\ =16k^3\left(k-2\right)-16k\left(k-2\right)\\ =\left(k-2\right)\left(16k^3-16k\right)\\ =\left(k-2\right)\left(16k\left(k^2-1\right)\right)\\ =16.\left(k-2\right)\left(k-1\right).k.\left(k+1\right)\\ \)

Tích 4 số tự nhiên liên tiếp luôn chia hết cho 3;8 nên chia hết cho 24

\(\Rightarrow A⋮16.24\\ \Rightarrow A⋮384\)

7 tháng 8 2018

ta có : \(n^4-4n^3-4n^2+16n=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n^3-4n\right)\left(n-4\right)=n\left(n-2\right)\left(n+2\right)\left(n-4\right)\)

th1: \(n=6\) ta có : \(n\left(n+2\right)\left(n-2\right)\left(n-4\right)=384⋮384\)

th2: giả sử \(n=2k\) với \(\left(k\in Z\backslash k>2\right)\)

thì ta có : \(2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)⋮384\)

vậy ta có khi \(n=2k+2\)

khi đó : \(n\left(n-2\right)\left(n+2\right)\left(n-4\right)=\left(2k+2\right)\left(2k\right)\left(2k+4\right)\left(2k-2\right)\)

tiếp đến là bn sử dụng phương pháp trên để chứng minh \(8\left(2k+2\right)\left(2k\right)\left(2k-2\right)⋮384\)

\(\Rightarrow\left(đpcm\right)\)

10 tháng 6 2017

Đề có sai ko bn?????????

9 tháng 11 2015

a) Xét n2+4n+3= n2+n+3n+3= n(n+1) + 3(n+1)= (n+1)(n+3) 
Mà n là số nguyên lẻ nên n chia cho 2 dư 1 hay n= 2k+1( k thuộc Z) 
do đó n2+4n+3= (n+1)(n+3)= (2k+1+1)(2k+1+3)= (2k+2)(2k+4) 
= 2(k+1)2(k+2)= 4(k+1)(k+2) 
Mà (k+1)(k+2) là tích 2 số nguyên liên tiếp nên chia hết cho 2. 
Vậy n2+4n+3= (n+1)(n+3)= 4(k+1)(k+2) chia hết cho 4; chia hết cho 2

=>n2+4n+3 chia hết cho 4.2=8 ( đpcm)

6 tháng 8 2016

a) vì n lẻ nên n có dạng 2k+1 vậy n^2+4n+3=4k^2+1+8k+4+3

=4k^2+8+8k NX:8+8n chia hết cho 8 nên 4k^2 chia hết cho 8

vì 2k+1 lẻ nên k là số chẳn vậy k chia 8 dư 0;2;4;6 TH dư 0 dễ

nếu k chia 8 dư 2 thì 4k chia hết cho 8; nếu k chia 8 dư 4 thì k^2 chia hết cho 8

nếu k chia 8 dư 6 thì 4k^2 chia hết cho 8. bạn tự nhân lên sẽ rõ lí do 

3 tháng 4 2018

 Cho A= ( 5m^2 - 8m^2 - 9m^2)( -n^3 + 4n^3)
Với giá trị nào m,n thì A ≥​ 0
A= ( 5m^2 - 8m^2 - 9m^2)( -n^3 + 4n^3)
A= -12m^2/3n^3
= -4m^2/n^3
do m^2>=0 với mọi m
nên A>=0
=> n<0 d0 -4<0

vậy A ≥​ 0 khi n<0 vầ m bất kì