tính GTNN của biểu thức :
a) A=(x+1)(2x-1)
b) B=(4x+1)(2x-5)
help me giúp tui với mai tui phải nộp bài :<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
a, 8.( -5 ).( -4 ).2
= [ 8.2 ].[( -5 ).(-4 ]
= 16.20
= 320
b, \(1\frac{3}{7}+\frac{-1}{3}+2\frac{4}{7}\)
\(=\frac{10}{7}+\frac{-1}{3}+\frac{18}{7}\)
\(=\frac{11}{3}\)
c, \(\frac{8}{5}.\frac{2}{3}+\frac{-5.5}{3.5}\)
\(=\frac{8}{3}+\frac{-5}{3}\)
\(=\frac{3}{3}=1\)
d, \(\frac{6}{7}+\frac{5}{8}:5-\frac{3}{16}.\left(-2\right)^2\)
\(=\frac{6}{7}+\frac{1}{8}-\frac{3}{16}.4\)
\(=\frac{55}{56}-\frac{3}{4}\)
\(=\frac{13}{56}\)
Câu 2 :
a, 2x + 10 = 16
2x = 16 + 10
2x = 26
x = 26 : 2
x = 13
b, \(x-\frac{1}{3}=\frac{5}{4}\)
\(x=\frac{5}{4}+\frac{1}{3}\)
\(x=\frac{19}{12}\)
c, \(2x+3\frac{1}{3}=7\frac{1}{3}\)
\(2x+\frac{10}{3}=\frac{22}{3}\)
\(2x=\frac{22}{3}-\frac{10}{3}\)
\(2x=4\)
\(x=4:2\)
\(x=2\)
d, \(\left(\frac{2}{11}+\frac{1}{3}\right)x=\left(\frac{1}{7}-\frac{1}{8}\right).56\)
\(\frac{17}{33}x=1\)
\(x=1-\frac{17}{33}\)
\(x=\frac{16}{33}\)
Bài 1 : Ta có : \(\frac{x}{y}=\frac{3}{4}\Rightarrow\frac{x}{3}=\frac{y}{4}\)
Đặt : \(x=3k;y=4k\)
hay \(D=\frac{12k-20k}{9k+16k}=\frac{-8k}{25k}=\frac{-8}{25}\)
Bài 2 :
a, ta có : \(\left|2x-1\right|=\frac{3}{2}\)
TH1 : \(2x-1=\frac{3}{2}\Leftrightarrow2x=\frac{5}{2}\Leftrightarrow x=\frac{5}{4}\)
TH2 : \(2x-1=-\frac{3}{2}\Leftrightarrow2x=-\frac{1}{2}\Leftrightarrow x=-\frac{1}{4}\)
* Với x = 5/4 ta được : \(C=4.\frac{5}{4}+3=8\)
* Với x = -1/4 ta được : \(C=4.\left(-\frac{1}{4}\right)+3=2\)
b, Ta có C = -5/2 hay \(4x+3=-\frac{5}{2}\Leftrightarrow4x=-\frac{11}{2}\Leftrightarrow x=-\frac{11}{8}\)
Vậy với x = -11/8 thì C = -5/2
Câu 1:
\(2x^3-3x^2+x+a\)
\(=2\left(x^3-6x^2+12x-8\right)+9\left(x^2-4x+4\right)+13\left(x-2\right)+\left(6+a\right)\)
\(=2\left(x-2\right)^3+9\left(x-2\right)^2+13\left(x-2\right)+\left(6+a\right)\)chia hết cho \(x-2\)khi và chỉ khi :
\(6+a=0\Leftrightarrow a=-6\). Vậy \(a=-6\).
Câu 2:
\(\left(x+1\right)\left(2x-x\right)-\left(3x+5\right)\left(x+2\right)=4x^2+1\)
\(\Leftrightarrow x^2+x-\left(3x^2+11x+10\right)=-4x^2+1\)
\(\Leftrightarrow x^2+x-3x^2-11x-10+4x^2-1=0\)
\(\Leftrightarrow2x^2-10x-11=0\)
\(\Delta'=\left(-5\right)^2-2\left(-11\right)=47>0\)
\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt:
\(x=\frac{5+\sqrt{47}}{2}\)hoặc \(x=\frac{5-\sqrt{47}}{2}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{5+\sqrt{47}}{2};\frac{5-\sqrt{47}}{2}\right\}\)
Bài 2:
a: Ta có: \(2x^2+y^2-2xy+x+2=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{7}{4}=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}=0\left(vôlý\right)\)
b: Ta có: \(-x^2-26y^2+10xy-20y-150=0\)
\(\Leftrightarrow x^2-10xy+25y^2+y^2+20y+100+50=0\)
\(\Leftrightarrow\left(x-5y\right)^2+\left(y+10\right)^2+50=0\left(vôlý\right)\)
Bài 1:
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\Leftrightarrow2\left(ab+bc+ca\right)=0-1=-1\)hay \(ab+bc+ca=-\dfrac{1}{2}\Leftrightarrow\left(ab+bc+ca\right)^2=\dfrac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\dfrac{1}{4}\)Ta có: \(P=a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)=1-2.\dfrac{1}{4}=\dfrac{1}{2}\)Vậy \(P=\dfrac{1}{2}\)
`a)`
`A=(x+1)(2x-1)`
`=2x^{2}+x-1`
`=2(x^{2}+(1)/(2)x-(1)/(2))`
`=2(x^{2}+(1)/(2)x+(1)/(16)-(9)/(16))`
`=2(x+(1)/(4))^{2}-(9)/(8)>= -9/8` với mọi `x`
Dấu `=` xảy ra khi :
`x+(1)/(4)=0<=>x=-1/4`
Vậy `min=-9/8<=>x=-1/4`
``
`b)`
`(4x+1)(2x-5)`
`=8x^{2}-18x-5`
`=8(x^{2}-(9)/(4)x-(5)/(8))`
`=8(x^{2}-(9)/(4)x+(81)/(64)-(121)/(64))`
`=8(x-(9)/(8))^{2}-(121)/(8)>= -(121)/(8)` với mọi `x`
Dấu `=` xảy ra khi :
`x-(9)/(8)=0<=>x=9/8`
Vậy `min=-121/8<=>x=9/8`
\(A=2x^2+x-1=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)
\(A_{min}=-\dfrac{9}{8}\) khi \(x=-\dfrac{1}{4}\)
\(B=8x^2-18x-5=8\left(x-\dfrac{9}{8}\right)^2-\dfrac{121}{8}\ge-\dfrac{121}{8}\)
\(B_{min}=-\dfrac{121}{8}\) khi \(x=\dfrac{9}{8}\)