Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)`
`A=(x+1)(2x-1)`
`=2x^{2}+x-1`
`=2(x^{2}+(1)/(2)x-(1)/(2))`
`=2(x^{2}+(1)/(2)x+(1)/(16)-(9)/(16))`
`=2(x+(1)/(4))^{2}-(9)/(8)>= -9/8` với mọi `x`
Dấu `=` xảy ra khi :
`x+(1)/(4)=0<=>x=-1/4`
Vậy `min=-9/8<=>x=-1/4`
``
`b)`
`(4x+1)(2x-5)`
`=8x^{2}-18x-5`
`=8(x^{2}-(9)/(4)x-(5)/(8))`
`=8(x^{2}-(9)/(4)x+(81)/(64)-(121)/(64))`
`=8(x-(9)/(8))^{2}-(121)/(8)>= -(121)/(8)` với mọi `x`
Dấu `=` xảy ra khi :
`x-(9)/(8)=0<=>x=9/8`
Vậy `min=-121/8<=>x=9/8`
\(A=2x^2+x-1=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)
\(A_{min}=-\dfrac{9}{8}\) khi \(x=-\dfrac{1}{4}\)
\(B=8x^2-18x-5=8\left(x-\dfrac{9}{8}\right)^2-\dfrac{121}{8}\ge-\dfrac{121}{8}\)
\(B_{min}=-\dfrac{121}{8}\) khi \(x=\dfrac{9}{8}\)
Bài 1 :
1) a2 - 4 + y ( a - 2 )
= ( a + 2 ) ( a - 2 ) + y ( a - 2 )
= ( a - 2 ) ( a + 2 + y )
2) ( x - 2 )2 - 9y2
= ( x - 2 - 3y ) ( x - 2 + 3y )
Bài 2 :
1) 3 ( x + 4 ) - 2x = 5
=> 3x + 12 - 2x = 5
=> x + 12 = 5
=> x = 5 - 12 = - 7
Vậy x = - 7
2) x ( x - 2 ) - x2 - 6 = 0
=> x2 - 2x - x2 - 6 = 0
=> - 2x - 6 = 0
=> 2x = - 6
=> x = \(-\frac{6}{2}=3\)
Vậy x = 3
3 ) x2 - 3x = 0
=> x ( x - 3 ) = 0
=> \(\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Vậy \(x\in\left\{0;3\right\}\)
4) 5 - 3 ( x - 6 ) = 4
=> 5 - 3x + 18 = 4
=> 3x = 5 + 18 - 4
=> 3x = 19
=> x = \(\frac{19}{3}\)
Vậy \(x=\frac{19}{3}\)
Mk làm bài 2 thui, bài 1 nhân ra rùi rút gọn đi là đc
a) \(5x^2-5y^2=5\left(x^2-y^2\right)=5\left(x-y\right)\left(x+y\right)\)
b) \(x^2-5xy+x-5y=x\left(x-5y\right)+\left(x-5y\right)=\left(x-5y\right)\left(x+1\right)\)
c) Phần này phải là \(x^2-y^2+4x+4y\)mới đúng, như vậy nó sẽ là :\(x^2-y^2+4x+4y=\left(x+y\right)\left(x-y\right)+4\left(x+y\right)=\left(x+y\right)\left(x-y+4\right)\)
d) \(x^2-2x-y^2-2y=\left(x^2-y^2\right)-\left(2x+2y\right)=\left(x+y\right)\left(x-y\right)-2\left(x+y\right)=\left(x+y\right)\left(x-y-2\right)\)
Chúc bạn hok tốt !
1. ĐKXĐ: \(x\ne\pm1\)
2. \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right)\cdot\dfrac{x+1}{2}\)
\(=\dfrac{\left(x+1\right)^2-\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{x^2+2x+1-x^2+4x-3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{6x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{2\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x-3}{x-1}\)
3. Tại x = 5, A có giá trị là:
\(\dfrac{5-3}{5-1}=\dfrac{1}{2}\)
4. \(A=\dfrac{x-3}{x-1}\) \(=\dfrac{x-1-3}{x-1}=1-\dfrac{3}{x-1}\)
Để A nguyên => \(3⋮\left(x-1\right)\) hay \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(tmđk\right)\\x=0\left(tmđk\right)\\x=4\left(tmđk\right)\\x=-2\left(tmđk\right)\end{matrix}\right.\)
Vậy: A nguyên khi \(x=\left\{2;0;4;-2\right\}\)
a) Cho x2 - x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }
Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x4 - x3 + 6x2- x sẽ luôn được kết quả là -5
=>-5 +a=0 => a=5
b) Cho x+2=0 => x=-2
Thay giá trị của x vào biểu thức 2x3 - 3x2 + x sẽ được kết quả là -30
=> -30 + a=0 => a=30
a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)
Thay n= \(\frac{-1}{3}\)vào biểu thức 3n3 + 10n2 -5 sẽ được kết quả -4
Vậy n = -4
b) Cho n-1=0 => n=1
Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1
Vậy n = 1
A = x(2x - 3) + 2x^2(x - 2) - 2x(x^2 - x + 1) + 5(x - 1)
A = 2x^2 - 3x + 2x^3 - 4x^2 - 2x^3 + 2x^2 - 2x + 5x - 5
A = -5 (đpcm)
A = x( 2x - 3 ) + 2x2( x - 2 ) - 2x( x2 - x + 1 ) + 5( x - 1 )
A = 2x2 - 3x + 2x3 - 4x2 - 2x3 + 2x2 - 2x + 5x - 5
A = -5
Vậy A không phụ thuộc vào x ( đpcm )
Đề bài là \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}\) hay là \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2}-\left(x+2\right)^2?\)
\(\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}\)
viết lại biểu thức