cho : \(\dfrac{a}{b}=\dfrac{c}{d}\)
CMR (2a+3c).(b+d)=(a+c).(2b+3d)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{a}{b+2c+3d}+\dfrac{b}{c+2d+3a}+\dfrac{c}{d+2a+3b}+\dfrac{d}{a+2b+3c}\)
\(=\dfrac{a^2}{ab+2ac+3ad}+\dfrac{b^2}{bc+2bd+3ab}+\dfrac{c^2}{cd+2ac+3bc}+\dfrac{d^2}{ad+2bd+3cd}\)
\(\ge\dfrac{\left(a+b+c+d\right)^2}{4\left(ab+ad+bc+bd+ca+cd\right)}\ge\dfrac{\left(a+b+c+d\right)^2}{\dfrac{3}{2}\left(a+b+c+d\right)^2}=\dfrac{2}{3}\)
*Chứng minh \(4\left(ab+ad+bc+bd+ca+cd\right)\le\dfrac{3}{2}\left(a+b+c+d\right)^2\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(a-c\right)^2+\left(c-d\right)^2\ge0\)
bạn cứ đặt công thức gốc là k sau đó thay vào các câu là được thui
Ta có :
\(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
\(\Leftrightarrow\dfrac{2a}{2b}=\dfrac{3c}{3d}=\dfrac{2a}{2b}=\dfrac{3c}{3d}\) (Áp dụng t/c dãy tỉ số bằng nhau)
\(\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)
Ta có:
Nếu:
\(\dfrac{2a+c}{2b+d}=\dfrac{a-c}{b-d}\Leftrightarrow\left(2a+c\right)\left(b-d\right)=\left(a-c\right)\left(2b+d\right)\)
\(\Leftrightarrow2a\left(b-d\right)+c\left(b-d\right)=a\left(2b+d\right)-c\left(2b+d\right)\)
\(\Leftrightarrow2ab-2ad+bc-cd=2ab+ad-2bc+cd\)
\(\Leftrightarrow ad=bc\)
\(\Leftrightarrow\dfrac{2a+c}{2b+d}=\dfrac{a-c}{b-d}\left(đpcm\right)\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\dfrac{2a+3c}{3a+4c}=\dfrac{2bk+3dk}{3bk+4dk}=\dfrac{2b+3d}{3b+4d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (1)
Thay (1) vào đề:
\(VT=\left(2a+3c\right)\left(b+d\right)=\left(2bk+3dk\right)\left(b+d\right)=2b^2k+3bdk+2bdk+3d^2k=3d^2k+2b^2k+5bdk\)
\(VP=\left(bk+dk\right)\left(2b+3d\right)=2b^2k+2bdk+3bdk+3d^2k=3d^2k+2b^2k+5bdk\)
Khi đó: \(VT=VP\)
\(\Leftrightarrow\left(2a+3c\right)\left(b+d\right)=\left(a+c\right)\left(2b+3d\right)\rightarrowđpcm.\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có:
\(\left(2a+3c\right)\left(b+d\right)=\left(2bk+3dk\right)\left(b+d\right)=2b^2k+2bkd+3bkd+3d^2k\)
\(=2b^2k+5bkd+3d^2k\)(1)
\(\left(a+c\right)\left(2b+3d\right)=\left(bk+dk\right)\left(2b+3d\right)=2b^2k+3bkd+2bkd+3d^2k\)
\(=2b^2k+5bkd+3d^2k\)(2)
Từ (1) và (2) suy ra:
\(\left(2a+3c\right).\left(b+d\right)=\left(a+c\right)\left(2b+3d\right)\)(đpcm)
Chúc bạn học tốt!!!