1 số tự nhiên có 2 chữ số trong đó chữ số hàng chục gấp 3 lần chữ số hàng đơn vị . Nếu đổi chỗ các chữ số của nó thì được số mới nhỏ hơn số đã cho 36 đơn vị . Tìm số đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Gọi số tự nhiên có 2 chữ số đó là \(\overline{ab}\)
Theo bài ra ta có:
\(\overline{ab}-36=\overline{ba}\) và a = 3b
Mà \(\overline{ab}-36=\overline{ba}\)
\(\Rightarrow10a+b-36=10b+a\)
\(\Rightarrow\left(10a-a\right)-36=10b-b\)
\(\Rightarrow9a-36=9b\)
\(\Rightarrow36=9a+9b\)
\(\Rightarrow3.9.b-9b=36\)
\(\Rightarrow27b-9b=36\)
\(\Rightarrow18b=36\)
\(\Rightarrow b=2\)
\(\Rightarrow a=2.3=6\)
Vậy số cần tìm là 62
Ta có các số tự nhiên có 2 chữ số mà chữ số hàng chục gấp ba lần chữ số hàng đơn vị: 93; 62; 31
Ta lần lượt thử các số:
Viết ngược của 31 là 13, kém số ban đầu: 31 ‐ 13 = 18 ﴾sai﴿
Viết ngược của 62 là 26, kém số ban đầu: 62 ‐ 26 = 36 ﴾đúng﴿
Viết ngược của 93 là 39, kém số ban đầu: 93 ‐ 39 = 54 ﴾sai﴿
Vậy số ban đầu là 62.
Đáp số: 62.
Gọi số đó là ab (0\(\le\)a;b \(\le\) 9)
Theo đầu bài ta có:
ab - ba = 36
10*a +b -10*b - a = 36
9*a - 9*b = 36
9 *(a-b) =36
Mà theo đầu bài a=3*b nên 9*(3*b-b)=36
=>9*2*b=36
=>18*b=36
=>b=2
Do đó a=2*3=6
Vậy số cần tìm là 62
Đáp số 62
Ta có các số sau chữ số hàng chục gấp 3 lần chữ số hàng đơn vị :
31 ; 62 ; 93
Nếu ab = 31 thì ab - ba = 18 ( thỏa mãn )
Nếu ab = 62 thì ab - ba = 36 ( loại )
Nếu ab = 93 thì ab - ba = 54 ( loại )
Vậy số cần tìm là 31
Ta có các số sau chữ số hàng chục gấp 3 lần chữ số hàng đơn vị :
31 , 62 , 93
Nếu ab = 31 thì ab - ba = 18 ( thỏa mãn )
Nếu ab = 62 thì ab - ba = 36 ( loại )
Nếu ab = 93 thì ab - ba = 54 ( loại )
Vậy số cần tìm là 31