K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2018

a. Ta có: a > b ⇔ 3a > 3b ⇔ 3a + 5 > 3b + 5 (1)

Mặt khác: 3b + 5 > 3b + 2 (2)

Từ (1) và (2) suy ra: 3a + 5 > 3b + 2

b. Ta có: a > b ⇔ -4a < -4b ⇔ 3 – 4a < 3 – 4b (1)

Mặt khác: 2 – 4a < 3 – 4a (2)

Từ (1) và (2) suy ra: 2 – 4a < 3 – 4b

23 tháng 3 2023

a. Ta có: a > b ⇔ 3a > 3b ⇔ 3a + 5 > 3b + 5 (1)

Mặt khác: 3b + 5 > 3b + 2 (2)

Từ (1) và (2) suy ra: 3a + 5 > 3b + 2

b. Ta có: a > b ⇔ -4a < -4b ⇔ 3 – 4a < 3 – 4b (1)

Mặt khác: 2 – 4a < 3 – 4a (2)

Từ (1) và (2) suy ra: 2 – 4a < 3 – 4b

6 tháng 4 2023

a)

`a<b`

`<=>3a<3b`

`<=>3a-5<3b-5`

b)

`a<b`

`<=>-8a> -8b`

`<=>-8a-3> -8b-3`

c)

`a<b`

`<=>4a<4b`

`<=>4a+9<4b+9`

mà `4a-7<4a+9`

`<=>4a-7<4b+9`

22 tháng 4 2020

2,

a, Nếu 2a + 4 \(\ge\) 2b + 4

thì 2a \(\ge\) 2b hay a \(\ge\) b

b, Nếu 3a - 5 \(\le\) 3b - 5

thì 3a \(\le\) 3b hay a \(\le\) b

3,

a, Nếu a \(\le\) b thì a - b \(\le\) 0 hay 2019(a - b) \(\le\) 0 hay 2019a \(\le\) 2019b hay 2019a + 2020 \(\le\) 2019b + 2020

b, Nếu a \(\le\) b thì -a \(\ge\) -b hay -42a \(\ge\) -42b hay -42a - 24 \(\ge\) -42b - 24

3,

a, Nếu a > b thì 3a > 3b hay 3a + 2 > 3b + 2

b, Nếu a > b thì -a < -b hay -4a < -4b hay -4a - 5 < -4b - 5

Chúc bn học tốt!!

22 tháng 4 2020

cảm ơn bạn nhiều lắm

12 tháng 6 2019

3a+5>3b+2
Ta có:
a>b => 3a>3b
=> 3a+5>3b+5
Lại có: 5>2
=> 3b+5>3b+2
=> 3a+5>3b+5>3b+2
Hay 3a+5>3b+2

12 tháng 6 2019

a, vì a > b nên 3a > 3b => 3a + 2 > 3b + 2 (1)

Mà 3a + 2 < 3a + 5 (2)

Từ (1) và (2) suy vô ra : 3a + 5 > 3b+2 (đpcm)

b, vì a > b nên -4a < -4b => 2-4a < 2- 4b

mà 2-4b < 3-4b nên 2-4a < 3-4b

24 tháng 4 2023

1.

a. -3a - 1 + 1 > -3b - 1 + 1 (cộng cả 2 vế cho 1)

  -3a . \(\left(\dfrac{-1}{3}\right)\) <  -3b . \(\left(\dfrac{-1}{3}\right)\) (nhân cả vế cho \(\dfrac{-1}{3}\) )

         a < b

b. 4a + 3 + (- 3) < 4b + 3 +(- 3) (cộng cả 2 vế cho -3)

   4a . \(\dfrac{1}{4}\) < 4b . \(\dfrac{1}{4}\) (nhân cả 2 vế cho \(\dfrac{1}{4}\) )

        a < b

2. 

a. Ta có: a < b 

3a < 3b ( nhân cả 2 vế cho 3)

3a - 7 < 3b - 7 (cộng cả 2 vế cho - 7 )

b. Ta có: a < b

-2a > -2b (nhân cả 2 vế cho -2)

5 - 2a > 5 - 2b ( cộng cẩ 2 vế cho 5)

c. Ta có: a < b 

2a < 2b (nhân cả vế cho 2)

2a + 3 < 2b + 3 (cộng cả 2 vế cho 3)

d. Ta có: a < b

3a < 3b (nhân cả 2 vế cho 3)

3a - 4 < 3b - 4 (cộng cả 2 vế cho -4)

Ta có: 3 < 4

đến đây ko bắt cầu qua đc chắc đề bài sai

 

 

 

28 tháng 5 2017

cần 1 lời giải đáp cụ thể

28 tháng 5 2017

trên face có đấy,lên đó mà tìm

15 tháng 1 2018

Ta có: \(\frac{a^2+b^2}{\left(4a+3b\right)\left(3a+4b\right)}\ge\frac{1}{25}\Leftrightarrow\frac{a^2+b^2}{\left(4a+3b\right)\left(3a+4b\right)}-\frac{1}{25}\ge0\)

\(\Leftrightarrow\frac{25a^2+25b^2-12a^2-25ab-12b^2}{25\left(4a+3b\right)\left(3a+4b\right)}\ge0\)

\(\Leftrightarrow\frac{13a^2-25ab+13b^2}{25\left(4a+3b\right)\left(3a+4b\right)}\ge0\)

\(\Leftrightarrow\frac{13\left(a^2-2.\frac{25}{26}ab+\frac{625}{676}b^2\right)+\frac{51}{52}b^2}{25\left(4a+3b\right)\left(3a+4b\right)}\ge0\)

\(\Leftrightarrow\frac{13\left(a-\frac{25}{26}b\right)^2+\frac{51}{52}b^2}{25\left(4a+3b\right)\left(3a+4b\right)}\ge0\)

Do a, b > 0 nên cả tử và mẫu của phân thức bên vế trái đều lớn hơn 0.

Vậy bất đẳng thức cuối là đúng hay \(\frac{a^2+b^2}{\left(4a+3b\right)\left(3a+4b\right)}\ge\frac{1}{25}\forall a,b>0;a\ne-\frac{3b}{4};b\ne-\frac{4b}{3}\)

8 tháng 5 2015

a) \(G=\frac{\frac{3a}{b}-\frac{2b}{b}}{\frac{a}{b}-\frac{3b}{b}}=\frac{3.\frac{10}{3}-2}{\frac{10}{3}-3}=\frac{10-2}{\frac{1}{3}}=24\)

b) \(H_1=\frac{\frac{2a-3b}{b}}{\frac{4a+3b}{b}}=\frac{\frac{2a}{b}-\frac{3b}{b}}{\frac{4a}{b}+\frac{3b}{b}}=\frac{2.\frac{10}{3}-3}{4.\frac{10}{3}+3}=\frac{\frac{11}{3}}{\frac{49}{3}}=\frac{11}{49}\)

\(H_2=\frac{\frac{5a-4b}{b}}{\frac{3a+b}{b}}=\frac{5.\frac{a}{b}-4}{3.\frac{a}{b}+1}=\frac{5.\frac{10}{3}-4}{3.\frac{10}{3}+1}=\frac{\frac{38}{3}}{\frac{33}{3}}=\frac{38}{33}\)

=> \(H=\frac{11}{49}-\frac{38}{33}=\frac{-1499}{1617}\)

8 tháng 4 2022

`Answer:`

a. Ta có: \(\frac{a}{b}=\frac{1}{3}\Rightarrow\frac{a}{1}=\frac{b}{3}\)

Đặt \(k=\frac{a}{1}=\frac{b}{3}\Rightarrow\hept{\begin{cases}a=k\\b=3k\end{cases}}\)

\(E=\frac{3a+2b}{4a-3b}\)

\(=\frac{3k+2.3k}{4k-3.3k}\)

\(=\frac{3k+6k}{4k-9k}\)

\(=\frac{9k}{-5k}\)

\(=-\frac{9}{5}\)

b. Thay `a-b=5` vào biểu thức `F`, ta được:

\(F=\frac{3a-\left(a-b\right)}{2a+b}-\frac{4b+\left(a-b\right)}{a+3b}\)

\(=\frac{3a-a+b}{2a+b}-\frac{4b+a-b}{a+3b}\)

\(=\frac{2a+b}{2a+b}-\frac{3b+a}{a+3b}\)

\(=1+1\)

\(=0\)

\(\dfrac{a}{b}=\dfrac{1}{3}\)

nên b=3a

\(E=\dfrac{3a+2b}{4a-3b}=\dfrac{3a+6a}{4a-9a}=\dfrac{9}{-5}=-\dfrac{9}{5}\)

a-b=5 nên a=b+5

\(F=\dfrac{3\left(b+5\right)-5}{2\left(b+5\right)+b}-\dfrac{4b+5}{b+5+3b}\)

\(=\dfrac{3b+10}{3b+10}-1=1-1=0\)