Một khối cầu đặc đồng chất, tâm O, bán kính R, khối lượng m, bị khoét một lỗ hổng cũng có dạng hình cầu tâm O’ bán kính R/2, như hình 3.34. Mômen quán tính của phần còn lại của khối cầu đối với trục Oy (tính theo m, R) là bao nhiêu ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Phần khoét đi, nếu đặt lại chỗ cũ sẽ hút m lực hấp dẫn:
Lực hấp dẫn do cả quả cầu đặc tác dụng lên m:
Do quả cầu đồng chất nên:
Thay vào (*) rồi biến đổi ta được
Đáp án A.
Phần khoát đi, nếu đặt lại chỗ cũ sẽ hút m lực hấp dẫn: F 1 = G M k m ( d - R 2 ) 2
Lực hấp dẫn do cả quả cầu đặc tác dụng lên m: F 2 = G M m d 2
Suy ra:
Đáp án A.
Gọi I là tâm của đường tròn dáy của chỏm cầu. M là 1 đỉnh của hình hộp thuộc đường tròn I ; R 2 .
Ta có:
I M = R 2 ; O M = R ⇒ O I = R 2 − R 2 4 = 3 R 2 .
Do đó khối hộp có chiều cao là
h = 3 R = 10 3 .
Thể tích của chỏm cầu bị cắt:
V = ∫ h 2 R π R 2 − x 2 d x = ∫ 5 3 10 π 100 − x 2 d x ≃ 53 , 87.
Thể tích của khối hộp chữ nhật:
V = S d . h = R 2 2 . 3 . R = 3 2 R 3 ≃ 866 , 025.
Thể tích khối cầu ban đầu:
V = 4 3 π R 3 ≃ 4188 , 79.
Do đó thể tích cần tính:
V ≃ 4188 , 79 − 866 , 025 − 2.53 , 87 ≃ 3215 , 023.
Ý tưởng chung là "bù" phần bị khoét, coi như nó đặc, như vậy ta luôn có \(I_O+I_{O'}=I_C\) với \(I_C\) là mômen quán tính của hình cầu đặc hoàn hảo khi chưa bị khoét \(\Rightarrow I_O=I_C-I_{O'}\)
Ta có khối lượng đã bị khoét:
\(\frac{m'}{m}=\left(\frac{r}{R}\right)^3\Rightarrow m'=\frac{m}{8}\)
TH1: Trục quay qua \(OO':\)
\(I_O=I_C-I_{O'}=\frac{2}{5}mR^2-\frac{2}{5}m'.r=\frac{2}{5}mR^2-\frac{2}{5}.\frac{m}{8}.\left(\frac{R}{2}\right)^2=\frac{31}{80}mR^2\)
TH2: Chứa O và vuông góc OO':
Áp dụng định lý Steiner-Huyghen, momen quán tính của phần tưởng tượng \(O'\) với trục qua O và vuông góc OO':
\(I_{O'}=\frac{2}{5}\frac{m}{8}\left(\frac{R}{2}\right)^2+\frac{m}{8}.\left(\frac{R}{2}\right)^2=\frac{7}{160}mR^2\)
\(\Rightarrow I_O=I_C-I_{O'}=\frac{2}{5}mR^2-\frac{7}{160}mR^2=\frac{57}{160}mR^2\)
- TH3: Chứa O' và vuông góc OO':
Áp dụng định lý Steiner-Huyghen, momen của khối chưa bị khoét \(I_C\) với trục mới:
\(I_C=\frac{2}{5}mR^2+m.\left(\frac{R}{2}\right)^2=\frac{13}{20}mR^2\)
\(\Rightarrow I_O=I_C-I_{O'}=\frac{13}{20}mR^2-\frac{2}{5}.\frac{m}{8}.\left(\frac{R}{2}\right)^2=\frac{51}{80}mR^2\)
Do tính đối xứng G nằm trên đường thẳng OO’ về phía đầy.
Trọng tâm của đĩa nguyên vẹn là tâm O; trọng tâm của đĩa bị khoét là O’.
P → là hợp lực của hai lực P → 1 , P → 2 .
O G O O ' = P 2 P 1 = m 2 m 1 = V 2 V 1 = S 2 S 1 = π R 2 4 3 π R 2 4 = 1 3 ⇒ O G = R 6
Chọn C.
Phương pháp: Dựa vào dữ kiện bài toán lập hàm số và tìm giá trị lớn nhất, nhỏ nhất.
Chọn đáp án C
Hình trụ nội tiếp nửa mặt cầu, nên theo giả thiết đường tròn đáy trên có tâm O’ là hình chiếu của O xuống mặt đáy (O’). Suy ra hình trụ và nửa mặt cầu cùng chung trục đối xứng và tâm của đáy dưới hình trụ trùng với tâm O của nửa mặt cầu.
Thể tích khối trụ là