K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

Hình vuông

a. Ta có: ˆBAH=ˆBAC+ˆCAH=ˆBAC+900

ˆEAC=ˆBAC+ˆBAE=ˆBAC+900

Suy ra: ˆBAH=ˆEAC

– Xét ∆ BAH và ∆ EAC:

BA = EA (vì ABDE là hình vuông)

ˆBAH=ˆEAC (chứng minh trên)

AH = AC (vì ACFH là hình vuông)

Do đó: ∆ BAH = ∆ EAC (c.g.c)

⇒ BH = EC

Gọi giao điểm của EC với AB và BH lần lượt là K và O.

ˆAEC=ˆABH (vì ∆ BAH = ∆ EAC) (1)

hay ˆAEK=ˆOBK

– Trong ∆ AEK ta có: ˆEAK=900

⇒ˆAEK+ˆAKE=900

9 tháng 2 2020

Um... phần a và b mình làm rồi nhưng còn phần c chưa giải được ._.

30 tháng 1 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Trong ∆ EBC , ta có: M là trung điểm EB (tính chất hình vuông)

I trung điểm BC (gt)

Nên MI là đường trung bình của ΔEBC

⇒ MI = 1/2 EC và MI // EC (tính chất đường trung bình của tam giác).

Trong  ∆ BCH, ta có: I trung điểm BC (gt)

N trung điểm của CH (tính chất hình vuông)

Nên NI là đường trung bình của  ∆ BCH

⇒ NI = 1/2 BH và NI // BH (tính chất đường trung bình của tam giác)

Mà BH = CE (chứng minh trên)

Suy ra: MI = NI nên  ∆ INM cân tại I

MI // EC (chứng minh trên)

EC ⊥ BH (chứng minh trên)

Suy ra: MI ⊥ BH. Mà NI // BH (chứng minh trên)

Suy ra: MI ⊥ NI hay ∠ (MIN) = 90 0

Vậy  ∆ MIN vuông cân tại I.

21 tháng 11 2016

Hình đa giác TenDaGiac1: DaGiac[B, A, 4] Hình đa giác TenDaGiac2: DaGiac[A, C, 4] Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng i: Đoạn thẳng [B, A] của Hình đa giác TenDaGiac1 Đoạn thẳng j: Đoạn thẳng [A, E] của Hình đa giác TenDaGiac1 Đoạn thẳng k: Đoạn thẳng [E, D] của Hình đa giác TenDaGiac1 Đoạn thẳng l: Đoạn thẳng [D, B] của Hình đa giác TenDaGiac1 Đoạn thẳng m: Đoạn thẳng [A, C] của Hình đa giác TenDaGiac2 Đoạn thẳng n: Đoạn thẳng [C, F] của Hình đa giác TenDaGiac2 Đoạn thẳng p: Đoạn thẳng [F, H] của Hình đa giác TenDaGiac2 Đoạn thẳng q: Đoạn thẳng [H, A] của Hình đa giác TenDaGiac2 Đoạn thẳng r: Đoạn thẳng [E, C] Đoạn thẳng s: Đoạn thẳng [B, H] Đoạn thẳng d: Đoạn thẳng [O1, O2] Đoạn thẳng e: Đoạn thẳng [O2, I] Đoạn thẳng f_1: Đoạn thẳng [O1, I] A = (-0.2, 4.86) A = (-0.2, 4.86) A = (-0.2, 4.86) B = (-1, 1.46) B = (-1, 1.46) B = (-1, 1.46) C = (4.56, 0.9) C = (4.56, 0.9) C = (4.56, 0.9) Điểm E: DaGiac[B, A, 4] Điểm E: DaGiac[B, A, 4] Điểm E: DaGiac[B, A, 4] Điểm D: DaGiac[B, A, 4] Điểm D: DaGiac[B, A, 4] Điểm D: DaGiac[B, A, 4] Điểm F: DaGiac[A, C, 4] Điểm F: DaGiac[A, C, 4] Điểm F: DaGiac[A, C, 4] Điểm H: DaGiac[A, C, 4] Điểm H: DaGiac[A, C, 4] Điểm H: DaGiac[A, C, 4] Điểm O2: Giao điểm của b, c Điểm O2: Giao điểm của b, c Điểm O2: Giao điểm của b, c Điểm O1: Giao điểm của t, a Điểm O1: Giao điểm của t, a Điểm O1: Giao điểm của t, a Điểm I: Trung điểm của g Điểm I: Trung điểm của g Điểm I: Trung điểm của g

a. Ta thấy \(\widehat{EAC}=\widehat{BAH}\left(=\widehat{BAC}+90^o\right)\)

Vậy nên \(\Delta EAC=\Delta BAH\left(c-g-c\right)\)

Từ đó suy ra \(\widehat{ACE}=\widehat{AHB}\)

Vì \(\widehat{AHB}+\widehat{JHF}+\widehat{F}+\widehat{FCA}=270^o\Rightarrow\widehat{ACE}+\widehat{JHF}+\widehat{F}+\widehat{FCA}=270^o\Rightarrow\widehat{HJC}=90^o\)

Vậy \(EC\perp BH.\)

b. Ta thấy \(O_1\) là trung điểm EB. Vậy thì O1I là đường trung bình của tam giác BEC hay O1I // EC. Tương tự O2I // BH.

Lại có \(EC\perp BH\)  nên \(O_1I\perp O_2I.\)

Vậy tam giác O1O2I là tam giác vuông tại I.

30 tháng 3 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: ∠ (BAH) =  ∠ (BAC) +  ∠ (CAH) =  ∠ (BAC) + 90 0

∠ (EAC) =  ∠ (BAC) +  ∠ (BAE) =  ∠ (BAC) +  90 0

Suy ra:  ∠ (BAH) =  ∠ (EAC)

* Xét BAH và EAC , ta có:

BA = EA (vì ABDE là hình vuông)

∠ (BAH) = (EAC) (chứng minh trên)

AH = AC (vì ACFH là hình vuông)

Suy ra:  ∆ BAH =  ∆ EAC (c.g.c) ⇒ BH = EC

Gọi K và O lần lượt là giao điểm của EC với AB và BH.

Ta có:  ∠ (AEC) =  ∠ (ABH) (vì  ∆ BAH =  ∆ EAC) (1)

Hay  ∠ (AEK) =  ∠ (OBK)

* Trong  ∆ AEK, ta có:  ∠ (EAK) =  90 0

⇒  ∠ (AEK) +  ∠ (AKE) =  90 0  (2)

Mà  ∠ (AKE) =  ∠ (OKB) (đối đỉnh) (3)

Từ (1), (2) và (3) suy ra:

∠ (OKB) +  ∠ (OBK) =  90 0

* Trong Δ BOK ta có:

∠ (BOK) +  ∠ (OKB) +  ∠ (OBK) =  180 0

⇒  ∠ (BOK) =  180 0  – ( ∠ (OKB) +  ∠ (OBK) ) =  180 0  –  90 0  =  90 0

Suy ra: EC ⊥ BH