Cho tam giác ABC, các đường cao BH và CK. Chứng minh rằng :
a) Bốn điểm B, C, H, K cùng thuộc một đường tròn
b) HK < BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M là trung điểm của BC.
Tam giác BCH vuông tại H có HM là đường trung tuyến nên:
HM = (1/2).BC (tính chất tam giác vuông)
Tam giác BCK vuông tại K có KM là đường trung tuyến nên:
KM = (1/2).BC (tính chất tam giác vuông)
Suy ra: MB = MC = MH = MK
Vậy bốn điểm B, C, H, K cùng nằm trên một đường tròn tâm M bán kính bằng (1/2).BC.
b: Xét tứ giác ANHM có
\(\widehat{ANH}+\widehat{AMH}=180^0\)
Do đó: ANHM là tứ giác nội tiếp
hay A,N,H,M cùng thuộc 1 đường tròn
a) Xét tứ giác BIKC có
\(\widehat{BIC}=\widehat{BKC}\left(=90^0\right)\)
nên BIKC là tứ giác nội tiếp
hay B,I,K,C cùng thuộc đường tròn đường kính BC(Vì \(\widehat{BIC}=\widehat{BKC}=90^0\))
b) Xét tứ giác AIHK có
\(\widehat{AIH}+\widehat{AKH}=180^0\)
nên AIHK là tứ giác nội tiếp
hay A,I,H,K cùng thuộc 1 đường tròn
a) Gọi M là trung điểm của BC.
=> ME = MB = MC = MD
Do đó bốn điểm B, E, D, C cùng thuộc đường tròn tâm M. (đpcm)
b) Trong đường tròn tâm M nói trên, ta có DE là dây, BC là đường kính nên DE < BC.
t sách giải