giải pt:
Ix-1I + Ix+2I + Ix-3I=4
I I: giá trị tuyệt đối nha các bạn. các bạn giúp mình nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left[{}\begin{matrix}2x-5=3-8x\\2x-5=8x-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}10x=8\\-6x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
Làm mẫu 1 phần :
a) \(|3x-1|+|x-1|=4\left(1\right)\)
Ta có: \(3x-1=0\Leftrightarrow x=\frac{1}{3}\)
\(x-1=0\Leftrightarrow x=1\)
Lập bảng xét dấu :
+) Với \(x< \frac{1}{3}\Rightarrow\hept{\begin{cases}3x-1< 0\\x-1< 0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=1-3x\\|x-1|=1-x\end{cases}\left(2\right)}}\)
Thay (2) vào (1) ta được :
\(\left(1-3x\right)+\left(1-x\right)=4\)
\(2-4x=4\)
\(4x=-2\)
\(x=\frac{-1}{2}\)( chọn )
+) Với \(\frac{1}{3}\le x< 1\Rightarrow\hept{\begin{cases}3x-1>0\\x-1< 0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=3x-1\\|x-1|=1-x\end{cases}\left(3\right)}}\)
Thay (3) vào (1) ta được :
\(\left(3x-1\right)+\left(1-x\right)=4\)
\(2x=4\)
\(x=2\)( chọn )
+) Với \(x\ge1\Rightarrow\hept{\begin{cases}3x-1>0\\x-1>0\end{cases}\Rightarrow}\hept{\begin{cases}|3x-1|=3x-1\\|x-1|=x-1\end{cases}\left(4\right)}\)
Thay (4) vào (1) ta được :
\(\left(3x-1\right)+\left(x-1\right)=4\)
\(4x-2=4\)
\(4x=6\)
\(x=\frac{3}{2}\)( chọn )
Vậy \(x\in\left\{\frac{-1}{2};2;\frac{3}{2}\right\}\)
a) Ta có : Ix + 1I = x - 2
\(\Leftrightarrow\orbr{\begin{cases}x+1=x-2\\x+1=2-x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-x=-2-1\\x+x=2-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}0x=-3\\2x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}0x=-3\left(v\text{ô}l\text{í}\right)\\x=\frac{1}{2}\end{cases}}\)
a) Ix + 1I = x - 2
<=> x + 1 = x - 2 hay x + 1 = 2 - x
<=> x - x = -2 - 1 I <=> x + x = 2 - 1
<=> 0x = -3 (vô lí) I <=> 2x = 1
I <=> x = 1/2
b) Ix - 1I = I2xI (*)
x | 0 | 1 | |||
x - 1 | - | - | - | 0 | + |
2x | - | 0 | + | + | + |
TH1: x < 0
(*) <=> 1 - x = -2x
<=> -x + 2x = -1
<=> x = -1
TH2: 0 <= x < 1
(*) <=> 1 - x = 2x
<=> -x - 2x = -1
<=> - 3x = -1
<=> x = 1/3
TH3: x >= 1
(*) <=> x - 1 = 2x
<=> x - 2x = 1
<=> -x = 1
<=> x = -1
c) Ix - 3I + Ix - 2I = 4 (**)
x | 2 | 3 | |||
x - 2 | - | 0 | + | + | + |
x - 3 | - | - | - | 0 | + |
TH1: x < 2
(**) <=> 3 - x + 2 - x = 4
<=> -2x = 4 - 3 - 2
<=> -2x = -1
<=> x = 1/2
TH2: 2 <= x < 3
(**) <=> 3 - x + x - 2 = 4
<=> 0x = 4 + 2 + 3
<=> 0x = 9 (vô lí)
TH3: x >= 3
(**) <=> x - 3 + x - 2 = 4
<=> 2x = 4 + 2 + 3
<=> 2x = 9
<=> x = 9/2
<=>|x+1|=|x2+1|
=>|x+1=|x+1|*|x|
=>|x+1|-|x+1|=|x|
=>|x|=0 hay x=0
ta có:
\(\left|x-1\right|+\left|x+2\right|+\left|x-3\right|=4\) (*)
TH1: x < -2
=> x-1<0 , x+2<0 , x-3< 0
=> (*) <=> -(x-1)-(x+2)-(x-3)=4
<=> x=\(\dfrac{-2}{3}\) ( không thỏa mãn đk)
TH2: \(-2\le x< 1\)
=> x-1<0 , x+2 \(\ge\) 0 , x-3 <0
=> (*) <=> -(x-1)+x+2-(x-3)=4
<=> x = 2 ( không thỏa mãn đk)
TH3: \(1\le x< 3\)
=> x-1\(\ge\)0 , x+2 >0 , x-3<0
=> (*)<=> x-1+x+2-(x-3)=4
<=> x= 0 ( không thỏa mãn đk)
TH4: x\(\ge\) 3
=> x-1 > 0 , x+2>0 , x-3\(\ge\) 0
=> (*) <=> x-1+x+2+x-3=4
<=> x= 2 ( không thỏa mãn đk)
Vậy phương trình trên vô nghiệm
vô nghiệm nhé bạn!!!