a) Tìm a, b \(\in\) N thỏa mãn \(\left(100a+3b+1\right)\left(2^a+10a+b\right)=225\)
Cho \(A=\dfrac{1}{1+3}+\dfrac{1}{1+3+5}+\dfrac{1}{1+3+5+7}+...+\dfrac{1}{1+3+5+...+2017}\)
Chứng minh \(A< \dfrac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(P=\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\)
\(P=\dfrac{\left(abc\right)^2}{a^3\left(b+c\right)}+\dfrac{\left(abc\right)^2}{b^3\left(c+a\right)}+\dfrac{\left(abc\right)^2}{c^3\left(a+b\right)}\)
\(P=\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ca\right)^2}{b\left(c+a\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\)
\(P\ge\dfrac{\left(bc+ca+ab\right)^2}{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}\) (BĐT B.C.S)
\(=\dfrac{ab+bc+ca}{2}\) \(\ge\dfrac{3\sqrt[3]{abbcca}}{2}=\dfrac{3}{2}\) (do \(abc=1\)).
ĐTXR \(\Leftrightarrow a=b=c=1\)
1.
Áp dụng BĐT Cauchy-Schwarz:
\(\dfrac{a}{2a+a+b+c}=\dfrac{a}{25}.\dfrac{\left(2+3\right)^2}{2a+a+b+c}\le\dfrac{a}{25}\left(\dfrac{2^2}{2a}+\dfrac{3^2}{a+b+c}\right)=\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{a}{a+b+c}\)
Tương tự:
\(\dfrac{b}{3b+a+c}\le\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{b}{a+b+c}\)
\(\dfrac{c}{a+b+3c}\le\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{c}{a+b+c}\)
Cộng vế:
\(VT\le\dfrac{6}{25}+\dfrac{9}{25}.\dfrac{a+b+c}{a+b+c}=\dfrac{3}{5}\)
Dấu "=" xảy ra khi \(a=b=c\)
2.
Đặt \(\dfrac{x}{x-1}=a;\dfrac{y}{y-1}=b;\dfrac{z}{z-1}=c\)
Ta có: \(\dfrac{x}{x-1}=a\Rightarrow x=ax-a\Rightarrow a=x\left(a-1\right)\Rightarrow x=\dfrac{a}{a-1}\)
Tương tự ta có: \(y=\dfrac{b}{b-1}\) ; \(z=\dfrac{c}{c-1}\)
Biến đổi giả thiết:
\(xyz=1\Rightarrow\dfrac{abc}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}=1\)
\(\Rightarrow abc=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)
\(\Rightarrow ab+bc+ca=a+b+c-1\)
BĐT cần chứng minh trở thành:
\(a^2+b^2+c^2\ge1\)
\(\Leftrightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\ge1\)
\(\Leftrightarrow\left(a+b+c\right)^2-2\left(a+b+c-1\right)\ge1\)
\(\Leftrightarrow\left(a+b+c-1\right)^2\ge0\) (luôn đúng)
\(A=\dfrac{\left(3+\dfrac{2}{15}+\dfrac{1}{5}\right):\dfrac{5}{2}}{\left(5+\dfrac{3}{7}-2-\dfrac{1}{4}\right):\left(4+\dfrac{43}{56}\right)}\)
\(=\dfrac{\dfrac{10}{3}\cdot\dfrac{2}{5}}{\dfrac{89}{28}:\dfrac{267}{56}}=\dfrac{4}{3}:\dfrac{2}{3}=2\)
\(B=\dfrac{\dfrac{6}{5}:\left(\dfrac{6}{5}\cdot\dfrac{5}{4}\right)}{\dfrac{8}{25}+\dfrac{2}{25}}=\dfrac{\dfrac{6}{5}:\dfrac{3}{2}}{\dfrac{2}{5}}=2\)
Do đó: A=B
thử bài bất :D
Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)
Hoàn toàn tương tự:
\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)
\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)
Cộng (*),(**),(***) vế theo vế ta được:
\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)
Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )
Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D
ko biết mk làm có đúng ko nhma có gì sai thì đừng trách mk nhé
\(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\ge\dfrac{63}{a^2+b^2+c^2}\)
\(6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{a}{ac}\right)+2021\ge\dfrac{54}{ab+bc+ac}+2021\ge\dfrac{54}{a^2+b^2+c^2}+2021\)
<=>\(\dfrac{1}{a^2+b^2+c^2}\ge\dfrac{2021}{9}\)
\(p^2=\left(\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\right)^2\)
áp dụng bđt \(a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\)
\(p^2\le3.\left(\dfrac{1}{3\left(2a^2+b^2\right)}+\dfrac{1}{3\left(2b^2+c^2\right)}+\dfrac{1}{3\left(2c^2+a^2\right)}\right)=\dfrac{1}{2a^2+b^2}+\dfrac{1}{2b^2+c^2}+\dfrac{1}{2c^2+a^2}\)
\(< =>p^2\le\dfrac{9}{2a^2+b^2+2b^2+c^2+2c^2+a^2}\)
<=> \(p^2\le3.\dfrac{1}{a^2+b^2+c^2}=\dfrac{2021}{3}< =>p\le\sqrt{\dfrac{2021}{3}}\)
dấu bằng xảy ra khi \(a=b=c=\sqrt{\dfrac{3}{2021}}\)
\(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)+2021\le6\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)+2021\)
\(\Rightarrow2021\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{1}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le\sqrt{2021.3}=\sqrt{6063}\)
Từ đó:
\(\sqrt{3\left(2a^2+b\right)}=\sqrt{\left(2+1\right)\left(2a^2+b^2\right)}\ge\sqrt{\left(2a+b\right)^2}=2a+b\)
\(\Rightarrow\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}\le\dfrac{1}{2a+b}=\dfrac{1}{a+a+b}\le\dfrac{1}{9}\left(\dfrac{2}{a}+\dfrac{1}{b}\right)\)
Tương tự: \(\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}\le\dfrac{1}{9}\left(\dfrac{2}{b}+\dfrac{1}{c}\right)\) ; \(\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\le\dfrac{1}{9}\left(\dfrac{2}{c}+\dfrac{1}{a}\right)\)
Cộng vế:
\(\Rightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)=\dfrac{1}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{\sqrt{6063}}{3}\)
\(P_{max}=\dfrac{\sqrt{6063}}{3}\) khi \(a=b=c=\dfrac{3}{\sqrt{6063}}\)
`đk:x ne +-3,x ne -2`
`B=(21/(x^2-9)-(x-4)/(3-x)-(x-1)/(3+x)):(1-1/(x+3))`
`=(21/(x^2-9)+(x-4)/(x-3)-(x-1)/(x+3)):((x+3-1)/(x+3))`
`=((21+x^2-x-12-x^2+4x-3)/((x-3)(x+3))):(x+2)/(x+3)`
`=(3x+6)/((x-3)(x+3))*(x+3)/(x+2)`
`=(3x+6)/((x-3)(x+2))`
`=3/(x-3)`
`b)|2x+1|=5`
`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-6\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=2(tm)\\x=-3(l)\end{array} \right.\)
`=>B=3/(2-3)=-3`
`c)B=-3/5`
`<=>3/(x-3)=3/(-5)`
`<=>x-3=-5`
`<=>x=-2(l)`
`d)B<0`
`<=>3/(x-3)<0`
Mà `3>0`
`=>x-3<0<=>x<3`
a) đk: \(x\ne\pm3\)
\(B=\left[\dfrac{21}{\left(x-3\right)\left(x+3\right)}+\dfrac{x-4}{x-3}-\dfrac{x-1}{x+3}\right]:\left(\dfrac{x+3-1}{x+3}\right)\)
= \(\left[\dfrac{21+\left(x-4\right)\left(x+3\right)-\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right]:\dfrac{x+2}{x+3}\)
= \(\dfrac{21+x^2-x-12-x^2+4x-3}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{x+2}\)
= \(\dfrac{3x+6}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{x+2}=\dfrac{3}{x-3}\)
b) Để \(\left|2x+1\right|=5\)
<=> \(\left[{}\begin{matrix}2x+1=5< =>x=2\left(c\right)\\2x+1=-5< =>x=-3\left(l\right)\end{matrix}\right.\)
Thay x = 2, ta có;
B = \(\dfrac{3}{2-3}=-3\)
c) Để B = \(\dfrac{-3}{5}\)
<=> \(\dfrac{3}{x-3}=\dfrac{-3}{5}\)
<=> x - 3 = -5
<=> x = -2
d) Để B < 0
<=> \(\dfrac{3}{x-3}< 0\)
<=> x - 3 < 0
<=> x < 3
A = (\(\dfrac{5}{6}\) - \(\dfrac{4}{5}\)) . 1\(\dfrac{1}{5}\) + \(\dfrac{3}{16}\) : (\(\dfrac{-1}{2}\))3
A = \(\dfrac{1}{30}\) . \(\dfrac{6}{5}\) + \(\dfrac{3}{16}\) : \(\dfrac{-1}{8}\)
A = \(\dfrac{1}{25}\) + \(\dfrac{3}{16}\) . \(\dfrac{-8}{1}\)
A = \(\dfrac{1}{25}\) + \(\dfrac{-3}{2}\)
A = \(\dfrac{-73}{50}\)
B = \(\dfrac{4}{17}\) . (7\(\dfrac{3}{4}\) - 6\(\dfrac{1}{3}\)) + (5\(\dfrac{3}{4}\) - 6.95) : (-1\(\dfrac{3}{5}\))
B = \(\dfrac{4}{17}\) . \(\dfrac{17}{12}\) + (\(\dfrac{23}{4}\) - \(\dfrac{139}{20}\)) : \(\dfrac{-8}{5}\)
B = \(\dfrac{1}{3}\) + \(\dfrac{-6}{5}\) . \(\dfrac{-5}{8}\)
B = \(\dfrac{13}{12}\)
Bài 1:
Ta có:
\(\left(100a+3b+1\right)\left(2^a+10a+b\right)=225\left(1\right)\)
Mà \(225\) lẻ nên \(\left\{{}\begin{matrix}100a+3b+1\\2^a+10a+b\end{matrix}\right.\) cùng lẻ \(\left(2\right)\)
\(*)\) Với \(a=0\) ta có:
Từ \(\left(1\right)\Leftrightarrow\left(100.0+3b+1\right)\left(2^a+10.0+b\right)=225\)
\(\Leftrightarrow\left(3b+1\right)\left(1+b\right)=225=3^2.5^2\)
Do \(3b+1\div3\) dư \(1\) và \(3b+1>1+b\)
Nên \(\left(3b+1\right)\left(1+b\right)=25.9\) \(\Rightarrow\left\{{}\begin{matrix}3b+1=25\\1+b=9\end{matrix}\right.\) \(\Leftrightarrow b=8\)
\(*)\) Với \(a\ne0\left(a\in N\right)\) ta có:
Khi đó \(100a\) chẵn, từ \(\left(2\right)\Rightarrow3b+1\) lẻ \(\Rightarrow b\) chẵn
\(\Rightarrow2^a+10a+b\) chẵn, trái với \(\left(2\right)\) nên \(b\in\varnothing\)
Vậy \(\left\{{}\begin{matrix}a=0\\b=8\end{matrix}\right.\)
Bài 2:
Ta có:
\(A=\dfrac{1}{1+3}+\dfrac{1}{1+3+5}+...+\dfrac{1}{1+3+...+2017}\)
\(=\dfrac{1}{\dfrac{\left(1+3\right).2}{2}}+\dfrac{1}{\dfrac{\left(1+5\right).3}{2}}+...+\dfrac{1}{\dfrac{\left(1+2017\right).1009}{2}}\)
\(=\dfrac{2}{2.4}+\dfrac{2}{3.6}+\dfrac{2}{4.8}+...+\dfrac{2}{1009.2018}\)
\(=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{1009.1009}\)
\(\Rightarrow A< \dfrac{1}{2.2}+\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{1008.1009}\right)\)
\(\Rightarrow A< \dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{1008}-\dfrac{1}{1009}\right)\)
\(\Rightarrow A< \dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{1009}\right)\)
\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}=\dfrac{3}{4}\) (Đpcm)
Tuyệt cú mèo