Với những giá trị nào của x thì giá trị của các hàm số \(y=\tan\left(\dfrac{\pi}{4}-x\right)\) và \(y=\tan2x\) bằng nhau ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kết hợp với điều kiện xác định suy ra
(k ∈ Z)
Vậy với (k ∈ Z)
thì
Bài 1. a) trục hoành cắt đoạn đồ thị y = tanx (ứng với x ∈ ) tại ba điểm có hoành độ - π ; 0 ; π. Do đó trên đoạn chỉ có ba giá trị của x để hàm số y = tanx nhận giá trị bằng 0, đó là x = - π; x = 0 ; x = π.
b) Đường thẳng y = 1 cắt đoạn đồ thị y = tanx (ứng với x ∈ ) tại ba điểm có hoành độ . Do đó trên đoạn chỉ có ba giá trị của x để hàm số y = tanx nhận giá trị bằng 1, đó là .
c) Phần phía trên trục hoành của đoạn đồ thị y = tanx (ứng với x ∈ ) gồm các điểm của đồ thị có hoành độ truộc một trong các khoảng . Vậy trên đoạn , các giá trị của x để hàm số y = tanx nhận giá trị dương là x ∈ .
d) Phần phía dưới trục hoành của đoạn đồ thị y = tanx (ứng với x ∈ ) gồm các điểm của đồ thị có hoành độ thuộc một trong các khoảng . Vậy trên đoạn , các giá trị của x để hàm số y = tanx nhận giá trị âm là x ∈ .
a) \(\left\{-\pi;0;\pi\right\}\)
b) \(\left\{\dfrac{\pi}{4};\dfrac{\pi}{4}\pm\pi\right\}\)
c) \(\left(-\pi;-\dfrac{\pi}{2}\right)\cup\left(0;\dfrac{\pi}{2}\right)\cup\left(\pi;\dfrac{3\pi}{2}\right)\)
d) \(\left(-\dfrac{\pi}{2};0\right)\cup\left(\dfrac{\pi}{2};\pi\right)\)
\(y=4cos^2\left(\dfrac{x}{2}-\dfrac{\pi}{12}\right)-7=2\left[cos\left(x-\dfrac{\pi}{6}\right)+1\right]-7=2cos\left(x-\dfrac{\pi}{6}\right)-5\)
Đặt \(x-\dfrac{\pi}{6}=t\Rightarrow t\in\left[-\dfrac{\pi}{6};\dfrac{5\pi}{6}\right]\)
\(\Rightarrow y=2cost-5\)
Do \(t\in\left[-\dfrac{\pi}{6};\dfrac{5\pi}{6}\right]\Rightarrow cost\in\left[-\dfrac{\sqrt{3}}{2};1\right]\)
\(\Rightarrow y\in\left[-5-\sqrt{3};-3\right]\)
\(y_{max}=-3\) khi \(t=0\) hay \(x=\dfrac{\pi}{6}\)
\(y_{min}=-5-\sqrt{3}\) khi \(y=\dfrac{5\pi}{6}\) hay \(x=\pi\)
Bài 6. Các giá trị cần tìm của x là các nghiệm của phương trình
tan 2x = tan ( - x) ,
Đáp số : ( k ∈ Z, k - 2 không chia hết cho 3).
Giá trị của x cần tìm là nghiệm của phương trình:
\(tan\left(\dfrac{\pi}{4}-x\right)=tan2x\)
pt\(\Leftrightarrow\left\{{}\begin{matrix}cos\left(\dfrac{\pi}{4}-x\right)\ne0\\cos2x\ne0\\\dfrac{\pi}{4}-x=2x+k\pi\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}cos2x\ne0\\3x=\dfrac{\pi}{4}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x\ne\dfrac{\pi}{2}+k\pi\\x=\dfrac{\pi}{12}+\dfrac{k\pi}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{12}+\dfrac{k\pi}{3}\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{\pi}{12}+\dfrac{k\pi}{3}\).