phân tích các đa thức thành nhân tử
5xy^2 - 6x^2y
2x - 5y + 10xy - 15y^2
x^2 - 2x - 4xy + 8y
x^2 - 4
X62 - 2x + 1 -y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,=\left(x-2\right)\left(5-y\right)\\ 2,=2\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(2x-2y-z\right)\\ 3,=5xy\left(x-2y\right)\\ 4,=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-4z^2\right]\\ =3\left(x-y-2z\right)\left(x-y+2z\right)\\ 5,=\left(x+2y\right)^2-16=\left(x+2y-4\right)\left(x+2y+4\right)\\ 6,=-\left(6x^2-3x-4x+2\right)=-\left(2x-1\right)\left(3x-2\right)\\ 7,=\left(2x+y\right)\left(2x+y+x\right)=\left(2x+y\right)\left(3x+y\right)\\ 8,=\left(x-y\right)\left(x+5\right)\\ 9,=\left(x+1\right)^2-y^2=\left(x-y+1\right)\left(x+y+1\right)\\ 10,=\left(x^2-9\right)x=x\left(x-3\right)\left(x+3\right)\\ 11,=\left(x-2\right)\left(y+1\right)\\ 12,=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\\ 13,=3\left(x+y\right)-\left(x+y\right)^2=\left(x+y\right)\left(3-x-y\right)\)
a) x3-2x2-x+2
=x(x2-1)+2(-x2+1)
=x(x2-1)-2(x2-1)
=(x2-1)(x-2)
b)
x2+6x-y2+9
=x2+6x+9-y2
=(x+3)2-y2
=(x+3-y)(x+3+y)
a)\(x^2+10x+25-y^2\)
\(=\left(x+5\right)^2-y^2\)
\(=\left(x+5+y\right)\left(x+5-y\right)\)
b)\(5x^3-7x^2+10x-14\)
\(=x^2\left(5x-7\right)+2\left(5x-7\right)\)
\(=\left(x^2+2\right)\left(5x-7\right)\)
c)\(-5y^2+30y-45\)
\(=-5\left(y^2-6y+9\right)\)
\(=-5\left(y-3\right)^2\)
e)\(4xy^2-8xyz+4xz^2\)
\(=4x\left(y^2-2yz+z^2\right)\)
\(=4x\left(y-z\right)^2\)
f)\(x^2+7x+10\)
\(=x^2+5x+2x+10\)
\(=x\left(x+5\right)+2\left(x+5\right)\)
\(=\left(x+2\right)\left(x+5\right)\)
k)\(2x^7+6x^6+6x^5-2x^4\)
\(=2x^4\left(x^3+3x^2+3x-1\right)\)
a)\(x^2+10x+25-y^2\)
\(=\left(x+5\right)^2-y^2\)
\(=\left(x+5-y\right)\left(x+5+y\right)\)
b)\(5x^3-7x^2+10x-14\)
\(=x^2\left(5x-7\right)+2\left(5x-7\right)\)
\(=\left(5x-7\right)\left(x^2+2\right)\)
c)\(-5y^2+30y-45\)
\(=-5\left(y^2-6y+9\right)\)
\(=-5\left(y-3\right)^2\)
e)\(4xy^2-8xyz+4xz^2\)
\(=4x\left(y^2-2yz+z^2\right)\)
\(=4x\left(y-z\right)^2\)
f)\(x^2+7x+10\)
\(=x^2+5x+2x+10\)
\(=x\left(x+5\right)+2\left(x+5\right)\)
k)\(2x^7+6x^6+6x^5-2x^4\)
\(=2x^4\left(x^3+3x^2+3x-1\right)\)
\(=\left(x+2\right)\left(x+5\right)\)
a, \(5x^2-10xy+5y^2=5\left(x^2-2xy+y^2\right)=5.\left(x-y\right)^2\)
b, \(x^2-4x+4-y^2=\left(x^2-4x+4\right)-y^2=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
c, \(3x^2-2x-5=3x^2-5x+3x-5=x\left(3x-5\right)+3x-5\)
\(=\left(3x-5\right)\left(x+1\right)\)
a) 4x2 - 5xy + y2 = 4x2 - 4xy - xy + y2 = 4x( x - y ) - y( x - y ) = ( x - y )( 4x - y )
b) x2 - 4xy + 3y2 = x2 - xy - 3xy + 3y2 = x( x - y ) - 3y( x - y ) = ( x - y )( x - 3y )
c) 9x2 + 6xy - 8y2 = 9x2 - 6xy + 12xy - 8y2 = 9x( x - 2/3y ) + 12y( x - 2/3y ) = ( x - 2/3y )( 9x + 12y )
d) 2x2 + 3xy - 5y2 = 2x2 - 2xy + 5xy - 5y2 = 2x( x - y ) + 5y( x - y ) = ( x - y )( 2x + 5y )
e) x2 - 35y2 - 2xy = x2 + 5xy - 7xy - 35y2 = x( x + 5y ) - 7y( x + 5y ) = ( x + 5y )( x - 7y )
f) 2x2 + 10xy + 8y2 = 2( x2 + 5xy + 4y2 ) = 2( x2 + xy + 4xy + 4y2 ) = 2[ x( x + y ) + 4y( x + y ) ] = 2( x + y )( x + 4y )
g) x2 - 10xy + 16y2 = x2 - 2xy - 8xy + 16y2 = x( x - 2y ) - 8y( x - 2y ) = ( x - 2y )( x - 8y )
h) 4x2 + 4xy - 15y2 = 4x2 - 6xy + 10xy - 15y2 = 4x( x - 3/2y ) + 10y( x - 2/3y ) = ( x - 2/3y )( 4x + 10y )
i) -7xy + 3x2 + 2y2 = 3x2 - xy - 6xy + 2y2 = 3x( x - 1/3y ) - 6y( x - 1/3y ) = ( x - 1/3y )( 3x - 6y )
j) 56y2 + 4x2 - 36xy = 4( x2 - 9xy + 14y2 ) = 4( x2 - 2xy - 7xy + 14y2 ) = 4[ x( x - 2y ) - 7y( x - 2y ) ] = 4( x - 2y )( x - 7y )
a/ = xy(5y - 6x)
b/ = - (15y2 - 2x + 5y - 10xy)