Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, x2+2xy+y2+2x+2y-15
<=> (x+y )2+2(x+y)+1-16
Đặt x+y =a
<=> a2+2a+1-42
<=> (a+1)2-42
<=> (a+5)(a-3) =>( x+y+5)(x+y-3)
b, x2-4xy+4y2-2x-4y-35
<=> (x-2y)2-2(x-2y)+1-36
Đặt (x-2y) =b
=> b2-2b+1-62
<=> (b-1)2-62
<=> (b-7)(b+5)=> (x-2y-7)(x-2y+5)
c,
a,A= x^2+2xy+y^2+2x+2y-15
= (x+y)^2+(x+y)-15
Đặt x+y=a, ta có:
A=a^2+2a-15
=a^2+2a+1-16
=(a+1)^2-4^2
=(a+1+4)(a+1-4)
=(a+5)(a-3)
Thay a=x+y, ta có: A=(x+y+5)(x+y-3).
a) xy+3x-7y-21
=x(y+3)-7(x+3)
=(x-7)(y+3)
b)2xy-15-6x-5y
=2x(y-3)-5(-3+y)
=(2x-5)(y-3)
c)2x^2y+2xy^2-2x-2y
=2x(xy-1)+2y(xy-1)
=(2x+2y)(xy-1)
x(x+3)-5x(x-5)-5(x+3)
=(x-5)(x+3)-5x(x-5)
=(x-5)(x+3-5x)
Câu cuối mình bị nhầm dòng cuối phải là (x-5)(x+3+x-5)=(x-5)(2x-2)nha bạn
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+2x\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+2x\right)\)
\(a,2x^3y-2xy=2xy\left(x^2-1\right)=2xy\left(x-1\right)\left(x+1\right)\)
\(b,x^2-2x-4x^2-4x=-3x^2-2x-4x\\ =-3x^2-6x=-3\left(x^2+2x\right)=-3x\left(x+2\right)\)
\(X^2-2XY+Y^2+2X-2Y\)
\(\Leftrightarrow\left(X^2-2XY+Y^2\right)+\left(2X-2Y\right)\)
\(\Leftrightarrow\left(X-Y\right)^2+2\left(X-Y\right)\)
\(\Leftrightarrow\left(X-Y\right)\left(X-Y+2\right)\)
Tk mình nhé.
Lời giải:
$2x^2+y^2-2xy+2x-4y+9$
$=(x^2+y^2-2xy)+4(x-y)+(x^2-2x+1)+8$
$=(x-y)^2+4(x-y)+4+(x-1)^2+4$
$=(x-y+2)^2+(x-1)^2+4$
Này chỉ tính được min thôi chứ không phân tích được thành nhân tử bạn nhé.
a) x3-2x2-x+2
=x(x2-1)+2(-x2+1)
=x(x2-1)-2(x2-1)
=(x2-1)(x-2)
b)
x2+6x-y2+9
=x2+6x+9-y2
=(x+3)2-y2
=(x+3-y)(x+3+y)