K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

a,  x2+2xy+y2+2x+2y-15

<=> (x+y )2+2(x+y)+1-16

Đặt x+y =a

<=> a2+2a+1-42

<=> (a+1)2-42

<=> (a+5)(a-3) =>( x+y+5)(x+y-3)

b, x2-4xy+4y2-2x-4y-35

<=> (x-2y)2-2(x-2y)+1-36

Đặt (x-2y)  =b 

=> b2-2b+1-62

<=> (b-1)2-62

<=> (b-7)(b+5)=> (x-2y-7)(x-2y+5)

c, 

26 tháng 7 2018

a,A= x^2+2xy+y^2+2x+2y-15

= (x+y)^2+(x+y)-15

Đặt x+y=a, ta có:

A=a^2+2a-15

  =a^2+2a+1-16

  =(a+1)^2-4^2

  =(a+1+4)(a+1-4)

  =(a+5)(a-3)

Thay a=x+y, ta có: A=(x+y+5)(x+y-3).

15 tháng 7 2016

a) xy+3x-7y-21

=x(y+3)-7(x+3)

=(x-7)(y+3)

b)2xy-15-6x-5y

=2x(y-3)-5(-3+y)

=(2x-5)(y-3)

c)2x^2y+2xy^2-2x-2y

=2x(xy-1)+2y(xy-1)

=(2x+2y)(xy-1)

x(x+3)-5x(x-5)-5(x+3)

=(x-5)(x+3)-5x(x-5)

=(x-5)(x+3-5x)

15 tháng 7 2016

Câu cuối mình bị nhầm dòng cuối phải là (x-5)(x+3+x-5)=(x-5)(2x-2)nha bạn

NV
5 tháng 11 2021

Đa thức này ko phân tích thành nhân tử được

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+2x\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2+2x\right)\)

31 tháng 12 2021

\(a,2x^3y-2xy=2xy\left(x^2-1\right)=2xy\left(x-1\right)\left(x+1\right)\)

\(b,x^2-2x-4x^2-4x=-3x^2-2x-4x\\ =-3x^2-6x=-3\left(x^2+2x\right)=-3x\left(x+2\right)\)

27 tháng 9 2017

      \(X^2-2XY+Y^2+2X-2Y\)

\(\Leftrightarrow\left(X^2-2XY+Y^2\right)+\left(2X-2Y\right)\)

\(\Leftrightarrow\left(X-Y\right)^2+2\left(X-Y\right)\)

\(\Leftrightarrow\left(X-Y\right)\left(X-Y+2\right)\)

Tk mình nhé.

27 tháng 9 2017

\(X^2\) là mũ 2 à bạn? 

28 tháng 6 2016

\(2x^3y-2xy^3-4xy^2-2xy=2xy\left(x^2-y^2-2y-1\right)\)

AH
Akai Haruma
Giáo viên
26 tháng 1 2022

Lời giải:

$2x^2+y^2-2xy+2x-4y+9$

$=(x^2+y^2-2xy)+4(x-y)+(x^2-2x+1)+8$

$=(x-y)^2+4(x-y)+4+(x-1)^2+4$

$=(x-y+2)^2+(x-1)^2+4$

Này chỉ tính được min thôi chứ không phân tích được thành nhân tử bạn nhé.