Tìm GTNN của biểu thức:
A=\(\dfrac{x^2-2x+2007}{2007x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt
\(A=\dfrac{x^2-2x+2007}{2007x^2}=\dfrac{2007x^2-2\cdot x\cdot2007\cdot2007^2}{2007^2x^2}\)
\(\Rightarrow A=\dfrac{\left(x-2007\right)^2}{2007^2x^2}+\dfrac{2006}{2007^2}\ge\dfrac{2006}{2007^2}\)
Dấu ''='' xảy ra
\(\Leftrightarrow\dfrac{\left(x-2007\right)^2}{2007^2x^2}=0\Rightarrow\left(x-2007\right)^2=0\)
\(\Rightarrow x=2007\)
Vậy \(A_{MIN}=\dfrac{2006}{2007^2}\Leftrightarrow x=2007\)
Đặt A=\(\dfrac{x^2-2x+2007}{2007x^2}\)
2007A=\(\dfrac{2007x^2-2.2007x^2+2007^2}{2007x^2}\)
2007A-\(\dfrac{2006}{2007}\)=\(\dfrac{2007x^2-2.2007x+2007^2-2006x^2}{2007x^2}\)
2007A-\(\dfrac{2006}{2007}\)=\(\dfrac{x^2-2.2007x+2007^2}{2007x^2}\)
2007A-\(\dfrac{2006}{2007}\)=\(\dfrac{\left(x-2007\right)^2}{2007x^2}>=0\)
=>2007A>=\(\dfrac{2006}{2007}\)
=>A>=\(\dfrac{2006}{2007^2}\)
=>GTNN của A=\(\dfrac{2006}{2007^2}\)Dấu = xảy ra khi x=2007
\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}=\frac{x^2-2x.2007+2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)
\(=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)
A min =\(\frac{2006}{2007}\)khi \(x-2007=0\)
\(\Leftrightarrow x=2007\)
\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}\)
\(A=\frac{x^2-2x.2007-2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)
\(A=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)
\(\Rightarrow Amin=\frac{2006}{2007}\)khi \(x-2007=0\)
\(\Rightarrow x=2007\)
a)\(A=x^6-2007x^5+2007x^4-2007x^3+2007x^2-2007x+2007\)
Tại \(x=2006\) thì giá trị biểu thức \(A\) là:
\(A=2006^6-2007\cdot2006^5+...-2007\cdot2006+2007\)
\(=2006^6-\left(2006+1\right)\cdot2006^5+...-\left(2006+1\right)\cdot2006+2007\)
\(=2006^6-2006^6+2006^5-...-2006^2-2006+2007\)
\(=-2006+2007=1\)
b)Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Khi đó
\(VT=\dfrac{\left(bk\right)^{2004}-b^{2004}}{\left(bk\right)^{2004}+b^{2004}}=\dfrac{b^{2004}k^{2004}-b^{2004}}{b^{2004}k^{2004}+b^{2004}}=\dfrac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\left(1\right)\)
\(VP=\dfrac{\left(dk\right)^{2004}-d^{2004}}{\left(dk\right)^{2004}+d^{2004}}=\dfrac{d^{2004}k^{2004}-d^{2004}}{d^{2004}k^{2004}+d^{2004}}=\dfrac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\left(2\right)\)
Từ \((1) và (2)\) ta có điều phải chứng minh
c)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2004\right|+\left|x-1\right|=\left|2004-x\right|+\left|x-1\right|\)
\(\ge\left|2004-x+x-1\right|=2003\)
Đẳng thức xảy ra khi \(1\le x\le2004\)
Vậy với \(1\le x\le2004\) thì \(A_{Min}=2003\)
Ta có: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Áp dụng vào bài toán \(\left|x-2004\right|+ \left|x-1\right|\ge\left|x-2004+1-x\right|=2003\)
Dấu "=" xảy ra khi \(\left(x-2004\right)\left(1-x\right)\ge0\)
.....
\(A=\frac{x^2-2x+2007}{2007x^2}=\frac{2006}{2007^2}+\frac{x^2-4014x+2007^2}{2007^2x^2}=\frac{2006}{2007^2}+\frac{\left(x-2007\right)^2}{2007^2x^2}\ge\frac{2006}{2007^2}\)
Dấu ''='' xảy ra \(\Leftrightarrow\) x = 2007
\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}\)
\(=\frac{x^2-2x.2007+2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)
\(=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)
A min =\(\frac{2006}{2007}\)khi \(x-2007=0\) hay \(x=2007\)
Đặt A = \(\dfrac{x^2-2x+2007}{2007x^2}\)
A = \(\dfrac{1}{2007}\) - \(\dfrac{2}{2007x}\) + \(\dfrac{1}{x^2}\)
A = ( \(\dfrac{1}{x^2}\) - \(\dfrac{2}{2007x}\) + \(\dfrac{1}{2007^2}\) ) + (\(\dfrac{1}{2007}-\dfrac{1}{2007^2}\) )
A = ( \(\dfrac{1}{x}-\dfrac{1}{2007}\))2 + (\(\dfrac{1}{2007}-\dfrac{1}{2007^2}\))
Để Amin <=> \(\dfrac{1}{x}-\dfrac{1}{2007}\) = 0
<=> x = 2007
Vậy x = 2007 thì Amin
bài này từng có trên violimpic đấy bạn
\(A=\dfrac{x^2-2x+2007}{2007x^2}=\dfrac{2006}{2007^2}+\dfrac{x^2-4014x+2007^2}{2007^2x^2}=\dfrac{2006}{2007^2}+\dfrac{\left(x-2007\right)^2}{2007^2x^2}\ge\dfrac{2006}{2007^2}\)
Vậy GTNN là \(A=\dfrac{2006}{2007^2}\) đạt được khi \(x=2007\)