Tổng 1 + 1/2 + 1/3 + 1/4 + 1/5 + ....... + 1/17 + 1/18 bằng a/b với a/b là phân số tối giải. Chứng minh rằng b chia hết cho 2431?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\frac{1}{2}+\frac{1}{3}+\)...+ \(\frac{1}{17}+\frac{1}{18}\) Với \(\frac{a}{b}\) là phân số tối giản,
và \(\frac{A}{B}\) là phân số chưa tối giản)
=> B là BCNN của 2,3,4,...,18 = 2^4.3^2.5.7.11.13.17=
12252240
Ta nhận thấy các phân số sau khi qui đồng đều có tử chia
hết cho 11 trừ phân số \(\frac{1}{11}\) => A không chia hết cho 11, B
chia hêt cho 11 => b chia hết cho 11(1)
Bằng cách lý luận tương tự ta cũng có A không chia hết cho
13; 17 mà B chia hết cho 13; 17 => b chia hết cho 13; 17(2)
Từ (1); (2) => b chia hết cho 11.13.17=2431( Do 11, 13, 17
là các số nguyên tố ).
1 + 1/2 + 1/ 3 + ... + 1/17 + 1/18 = a/b = a/b [ voi a/ b la phan so chua toi gian]
=> b la bcnn cua 2, 3 ,4 ... , 18 = 2 /4 . 3/2 . 5.7 11. 13 .17 =12252240
ta nhan thay cac phan so truoc khi quy dong deu co tu so chia het cho 11 tru phan so 1/11 => a ko chia het cho 11 , b chia het cho11 = >b chia het cho 11 [1]
bang cach ly luan tuong tu ta cung co ako chia het cho13 ; 17 ma b chia het cho 13; 17=> b chia het cho 13 ; 17[2]
tu [1] va [2] > b chia het cho 11 . 13 . 17 = 2431 [ do 11. 13 . 17 la cac so nguyen to = > dpcm
1/2+1/3+1/4+...+1/18=A/B =a/b( Với a/b là phân số tối giản,
và A/B là phân số chưa tối giản)
=> B là BCNN của 2,3,4,...,18 = 2^4.3^2.5.7.11.13.17=
12252240
Ta nhận thấy các phân số sau khi qui đồng đều có tử chia
hết cho 11 trừ phân số 1/11 => A không chia hết cho 11, B
chia hêt cho 11 => b chia hết cho 11(1)
Bằng cách lý luận tương tự ta cũng có A không chia hết cho
13; 17 mà B chia hết cho 13; 17 => b chia hết cho 13; 17(2)
Từ (1); (2) => b chia hết cho 11.13.17=2431( Do 11, 13, 17
là các số nguyên tố => đpcm
1/2+1/3+1/4+...+1/18=A/B =a/b( Với a/b là phân số tối giản,
và A/B là phân số chưa tối giản)
=> B là BCNN của 2,3,4,...,18 = 2^4.3^2.5.7.11.13.17=
12252240
Ta nhận thấy các phân số sau khi qui đồng đều có tử chia
hết cho 11 trừ phân số 1/11 => A không chia hết cho 11, B
chia hêt cho 11 => b chia hết cho 11(1)
Bằng cách lý luận tương tự ta cũng có A không chia hết cho
13; 17 mà B chia hết cho 13; 17 => b chia hết cho 13; 17(2)
Từ (1); (2) => b chia hết cho 11.13.17=2431( Do 11, 13, 17
là các số nguyên tố => đpcm
Gọi 2 ps đó là a/b và c/d (ƯCLN (a,b) = 1; ƯCLN (c;d) = 1)
Ta có;
\(\frac{a}{b}+\frac{c}{d}=m\) (m thuộc Z)
=> \(\frac{ad+bc}{bd}=m\)
=> ad + bc = mbd (10
Từ (1) => ad + bc chia hết cho b
Mà bc chia hết cho b
=> ad chia hết cho b
Mà (a,b) = 1
=> d chia hết cho b (2)
Từ (1) => ad + bc chia hết cho d
Mà ad chia hết cho d
=> bc chia hết cho d
Mà (c,d) = 1
=> b chia hết cho d (3)
Từ (2) và (3) =>bh = d hoặc b = -d (đpcm)
Câu 1 :
a) 356abc chia hết cho 5;7 và 9
\(\Rightarrow\)356abc chia hết cho BCNN (5,7,9)
\(\Rightarrow\)356abc chia hết cho 315
Ta thấy : 356999 chia cho 315 dư 104. Do đó :
356999 - 104 = 356895 chia hết cho 315
356895 - 315 = 356580 chia hết cho 315
356580 - 315 = 356265 chia hết cho 315
Đó là 3 số cần tìm.
b) S= 5 + 52 + 53 + ........ + 52013
Tổng S có 2013 có số, nhóm 3 số vào 1 nhóm thì vừa hết
Ta có :
S = (5 + 52 + 53) + (54 + 55 + 56) +........+ (52011 + 52012 + 52013)
S = (5 + 52 + 53) + 53(5 + 52 + 53) + ......+ 52010(5 + 52 + 53)
S = 5(1 + 5 + 52) + 54(1 + 5 + 52) + .......+ 52011(1 + 5 + 52)
S = 5 . 31 + 54 . 31 + .......+ 52011 . 31
S = 31(5 + 54 + ......+ 52011) chia hết cho 31
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15