\(1\)+\(\dfrac{-1}{60}+\dfrac{19}{120}< \dfrac{x}{36}< \dfrac{58}{90}+\dfrac{59}{72}+\dfrac{-1}{60}\)\(\left(x\in Z\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>360+57<10x<58x4+59x5
=>417<10x<527
\(\Leftrightarrow10x\in\left\{420;430;440;...;510;520\right\}\)
hay \(x\in\left\{42;43;44;...;51;52\right\}\)
\(-\dfrac{1}{8}< \dfrac{x}{72}\le-\dfrac{1}{36}\)
\(\Rightarrow\dfrac{-9}{72}< \dfrac{x}{72}\le-\dfrac{2}{72}\)
\(\Rightarrow x\in\left\{-8;-7;-6;-5;-4;-3;-2\right\}\)
Ta có:
\(\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)-x=\dfrac{-19}{24}\)
\(\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right)-x=\dfrac{-19}{24}\)\(\left(\dfrac{4-3}{3.4}+\dfrac{5-4}{4.5}+\dfrac{6-5}{5.6}+\dfrac{7-6}{6.7}+\dfrac{8-7}{7.8}+\dfrac{9-8}{8.9}+\dfrac{10-9}{9.10}\right)-x=\dfrac{-19}{24}\)
\(\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)-x=\dfrac{-19}{24}\)\(\left(\dfrac{1}{3}-\dfrac{1}{10}\right)-x=\dfrac{-19}{24}\)
\(\dfrac{7}{30}-x=\dfrac{-19}{24}\)
\(x=\dfrac{7}{30}-\dfrac{-19}{24}\)
\(x=\dfrac{41}{40}\)
\(\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)-x=\dfrac{-19}{24}\)
\(\Leftrightarrow\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right)-x=\dfrac{-19}{24}\)
\(\Leftrightarrow\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)-x=\dfrac{-19}{24}\)
\(\Leftrightarrow\left(\dfrac{1}{3}-\dfrac{1}{10}\right)-x=\dfrac{-19}{24}\)
\(\Leftrightarrow\dfrac{7}{30}-x=\dfrac{-19}{24}\)
\(\Rightarrow x=\dfrac{7}{30}-\dfrac{-19}{24}\)
\(\Rightarrow x=\dfrac{41}{40}\)
a: \(=\dfrac{99}{100}:\left(\dfrac{3}{12}-\dfrac{1}{12}+\dfrac{4}{12}\right)-\dfrac{49}{25}\)
\(=\dfrac{99}{100}:\dfrac{1}{2}-\dfrac{49}{25}\)
\(=\dfrac{99}{50}-\dfrac{98}{50}=\dfrac{1}{50}\)
b: \(=\dfrac{13}{15}\cdot\dfrac{1}{4}\cdot3+\left(\dfrac{32}{60}-1-\dfrac{19}{60}\right):\dfrac{47}{24}\)
\(=\dfrac{39}{60}+\dfrac{-19}{60}\cdot\dfrac{24}{47}\)
=459/940
Bài 1:
\(\left(-\dfrac{72}{40}-\dfrac{144}{60}-2\dfrac{1}{3}\right):\left(\dfrac{45}{100}-\dfrac{25}{60}+-\dfrac{75}{25}\right)\)
\(=\left(-\dfrac{9}{5}-\dfrac{12}{5}-\dfrac{7}{3}\right):\left(\dfrac{9}{20}-\dfrac{5}{12}+-3\right)\)
\(=\left(-\dfrac{27}{15}-\dfrac{36}{15}-\dfrac{21}{15}\right):\left(\dfrac{27}{60}-\dfrac{25}{60}+-3\right)\)
\(=\left(-\dfrac{28}{5}\right):\left(-\dfrac{89}{30}\right)\)
\(=\left(-\dfrac{28}{5}\right).\left(-\dfrac{30}{89}\right)\)
\(=\dfrac{168}{89}\)
Mẫu số chung : \(LCM\left(60;120;36;90;72\right)=360\)
Quy đồng mẫu số :
\(\dfrac{360}{360}+\dfrac{-6}{360}+\dfrac{57}{360}< \dfrac{10\cdot x}{360}< \dfrac{232}{360}+\dfrac{295}{360}+\dfrac{-6}{360}\)
\(\Leftrightarrow\dfrac{411}{360}< \dfrac{10\cdot x}{360}< \dfrac{521}{360}\)
Vậy tập hợp các giá trị của x là \(x=\left\{42;43;44;45;46;47;48;49;50;51;52\right\}\)
Cảm ơn!