Giải phương trình : x3+9x2+11x-21=0
Giúp mik vs mấy bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a) Ta có: 7x+21=0
\(\Leftrightarrow7x=-21\)
hay x=-3
Vậy: S={-3}
b) Ta có: 3x-2=2x-3
\(\Leftrightarrow3x-2-2x+3=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
Vậy: S={-1}
c) Ta có: 5x-2x-24=0
\(\Leftrightarrow3x=24\)
hay x=8
Vậy: S={8}
Câu 2:
a) Ta có: \(\left(2x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-1\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=1\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{2};1\right\}\)
b) Ta có: \(\left(2x-3\right)\left(-x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\-x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\-x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=7\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{3}{2};7\right\}\)
c) Ta có: \(\left(x+3\right)^3-9\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left[\left(x+3\right)^2-9\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+3-3\right)\left(x+3+3\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=-6\end{matrix}\right.\)
Vậy: S={0;-3;-6}
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Leftrightarrow2+\frac{x+4}{2000}+\frac{x+3}{2001}=2+\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Leftrightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2001}+1\right)\)
\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
Mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)
Suy ra x+2004=0
\(\Leftrightarrow x=-2004\)
\(a.x^2-11x+15=-15.\Leftrightarrow x^2-11x+30=0.\)
\(\Leftrightarrow\left(x-6\right)\left(x-5\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=6.\\x=5.\end{matrix}\right.\)
\(b.2x-3x+10=x.\Leftrightarrow-2x+10=0.\Leftrightarrow x=5.\)
\(c.x^3-4=4.\Leftrightarrow x^3=8.\Leftrightarrow x^3=2^3.\Rightarrow x=2.\)
\(d.x^4+x^3-x^2-x=0.\Leftrightarrow x^2\left(x^2+x\right)-\left(x^2+x\right)=0.\Leftrightarrow\left(x^2-1\right)\left(x^2+x\right)=0.\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)x\left(x+1\right)=0.\Leftrightarrow\left(x-1\right)\left(x+1\right)^2x=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0.\\x+1=0.\\x=0.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-1.\\x=0.\end{matrix}\right.\)
\(9x^2-6x+20\)
\(=9x^2-6x+1+19\)
\(=\left(3x-1\right)^2+19>0\forall x\)
\(x^3+9x^2+11x-21=0\)
\(\Leftrightarrow x^3+7x^2+2x^2+11x-21=0\)
\(\Leftrightarrow x^2\left(x+7\right)+2x^2+11x-21=0\)
\(\Leftrightarrow x^2\left(x+7\right)+x^2+7x+x^2+4x-21=0\)
\(\Leftrightarrow x^2\left(x+7\right)+x\left(x+7\right)+x^2+4x-21=0\)
\(\Leftrightarrow\left(x+7\right)\left(x^2+x\right)+x^2+4x-21=0\)
\(\Leftrightarrow\left(x+7\right)\left(x^2+x\right)+x^2+7x-3x-21=0\)
\(\Leftrightarrow\left(x+7\right)\left(x^2+x\right)+x\left(7+x\right)-3\left(7+x\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-7\\x^2+2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=-3\\x=1\end{matrix}\right.\)
cách khác: "định hướng HĐT"
\(\left(x^3+3.3.x^2+3.3^2x+3^3\right)+\left[\left(-27x+11x\right)-27-21\right]=\left(x+3\right)^3-16\left(x+3\right)=0\)\(\left(x+3\right)\left[\left(x+3\right)^2-16\right]=\left(x+3\right)\left[\left(x+3\right)-4\right]\left[\left(x+3\right)+4\right]\)
\(\left(x+3\right)\left(x-1\right)\left(x+7\right)=0\)
\(\left[{}\begin{matrix}x=-3\\x=1\\x=-7\end{matrix}\right.\)