K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2017

\(x^3+9x^2+11x-21=0\)

\(\Leftrightarrow x^3+7x^2+2x^2+11x-21=0\)

\(\Leftrightarrow x^2\left(x+7\right)+2x^2+11x-21=0\)

\(\Leftrightarrow x^2\left(x+7\right)+x^2+7x+x^2+4x-21=0\)

\(\Leftrightarrow x^2\left(x+7\right)+x\left(x+7\right)+x^2+4x-21=0\)

\(\Leftrightarrow\left(x+7\right)\left(x^2+x\right)+x^2+4x-21=0\)

\(\Leftrightarrow\left(x+7\right)\left(x^2+x\right)+x^2+7x-3x-21=0\)

\(\Leftrightarrow\left(x+7\right)\left(x^2+x\right)+x\left(7+x\right)-3\left(7+x\right)=0\)

\(\Leftrightarrow\left(x+7\right)\left(x^2+2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-7\\x^2+2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=-3\\x=1\end{matrix}\right.\)

16 tháng 3 2017

cách khác: "định hướng HĐT"

\(\left(x^3+3.3.x^2+3.3^2x+3^3\right)+\left[\left(-27x+11x\right)-27-21\right]=\left(x+3\right)^3-16\left(x+3\right)=0\)\(\left(x+3\right)\left[\left(x+3\right)^2-16\right]=\left(x+3\right)\left[\left(x+3\right)-4\right]\left[\left(x+3\right)+4\right]\)

\(\left(x+3\right)\left(x-1\right)\left(x+7\right)=0\)

\(\left[{}\begin{matrix}x=-3\\x=1\\x=-7\end{matrix}\right.\)

9 tháng 1 2016

câu  hỏi để đấy tick mình thì mình sẽ giải.

10 tháng 1 2016

cảm owen các bạn nhìu nhak mink bít giải rùi

13 tháng 1 2017

Câu 1: 

a) Ta có: 7x+21=0

\(\Leftrightarrow7x=-21\)

hay x=-3

Vậy: S={-3}

b) Ta có: 3x-2=2x-3

\(\Leftrightarrow3x-2-2x+3=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

Vậy: S={-1}

c) Ta có: 5x-2x-24=0

\(\Leftrightarrow3x=24\)

hay x=8

Vậy: S={8}

Câu 2: 

a) Ta có: \(\left(2x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-1\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=1\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{1}{2};1\right\}\)

b) Ta có: \(\left(2x-3\right)\left(-x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\-x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\-x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=7\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{3}{2};7\right\}\)

c) Ta có: \(\left(x+3\right)^3-9\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left[\left(x+3\right)^2-9\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left(x+3-3\right)\left(x+3+3\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=-6\end{matrix}\right.\)

Vậy: S={0;-3;-6}

6 tháng 12 2020

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Leftrightarrow2+\frac{x+4}{2000}+\frac{x+3}{2001}=2+\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Leftrightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2001}+1\right)\)

\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

Mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)

Suy ra x+2004=0

\(\Leftrightarrow x=-2004\)

18 tháng 1 2022

\(a.x^2-11x+15=-15.\Leftrightarrow x^2-11x+30=0.\)

\(\Leftrightarrow\left(x-6\right)\left(x-5\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=6.\\x=5.\end{matrix}\right.\)

\(b.2x-3x+10=x.\Leftrightarrow-2x+10=0.\Leftrightarrow x=5.\)

\(c.x^3-4=4.\Leftrightarrow x^3=8.\Leftrightarrow x^3=2^3.\Rightarrow x=2.\)

\(d.x^4+x^3-x^2-x=0.\Leftrightarrow x^2\left(x^2+x\right)-\left(x^2+x\right)=0.\Leftrightarrow\left(x^2-1\right)\left(x^2+x\right)=0.\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)x\left(x+1\right)=0.\Leftrightarrow\left(x-1\right)\left(x+1\right)^2x=0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0.\\x+1=0.\\x=0.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-1.\\x=0.\end{matrix}\right.\)

14 tháng 10 2021

\(9x^2-6x+20\)

\(=9x^2-6x+1+19\)

\(=\left(3x-1\right)^2+19>0\forall x\)

27 tháng 1 2022

\(\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}=\frac{12}{1-9x^2}\left(ĐKXĐ:x\ne\pm\frac{1}{3}\right)\)

<=> \(\frac{\left(1-3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}-\frac{\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}=\frac{12}{\left(1-3x\right)\left(1+3x\right)}\)

=> \(\left(1-3x\right)^2-\left(1+3x\right)^2=12\)

<=> \(\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)=12\)

<=> \(-12x=12\)

<=> \(x=-1\left(TMĐK\right)\)

Vậy: ...

27 tháng 1 2022

\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)

\(\Leftrightarrow\)\(\frac{12}{\left(1-3x\right)\left(1+3x\right)}=\frac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}\)

\(\Rightarrow\)\(12=\left(1-3x\right)^2-\left(1+3x\right)^2\)

\(\Leftrightarrow\)\(12=\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)\)

\(\Leftrightarrow\)\(12=\left(-6x\right).2\)

\(\Leftrightarrow\)\(12=-12x\)

\(\Leftrightarrow\)\(x=-1\)

12 tháng 11 2021

\(x^2+2y^2-2xy+y=0\) đề phải như thế này chứ

12 tháng 11 2021

à, hình như tớ chép sai, vậy như thế làm thế nào vậy?