So sánh
S1 = 1 + 2 +2^2 + 2^3 +..............+2^2014
với
S2 = 2^2015 - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số hạng của tổng B là:
\(\frac{\left(2015-1\right)}{1}+1=2015\)(số hạng)
\(B=\frac{\left(1+2015\right)\cdot2015}{2}=2031120\)
\(A=\left(1^2-2^2\right)+\left(3^2-4^2\right)+\left(5^2-6^2\right)+...+\left(2013^2-2014^2\right)+2015^2\)
\(A=\left(-3\right)+\left(-7\right)+\left(-11\right)+...+\left(-4027\right)+4060225\)
Số số hạng của tổng A thuộc nguyên âm là:
\(\frac{2014}{2}=1007\)(số hạng)
\(A=\frac{\left(-3\right)+\left(-4027\right)\cdot1007}{2}+4060225\)
\(A=\left(-2029105\right)+4060225\)
\(A=2031120\)
Mà \(2031120=2031120\)
\(\Rightarrow A=B\)
\(A=1^2-2^2+3^2-4^2+...-2014^2+2015^2\)
\(A=1+\left(3^2-2^2\right)+\left(5^2-4^2\right)+...+\left(2015^2-2014^2\right)\)
\(A=1+\left(3-2\right).\left(2+3\right)+\left(4-5\right).\left(4+5\right)+...+\left(2015-2014\right).\left(2014+2015\right)\)
\(A=1+2+3+4+...+2015=B\)