K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2018

Ta có : 

\(T=\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}\)

\(\frac{1}{2}T=\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2015}{2^{2015}}\)

\(T-\frac{1}{2}T=\left(\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}\right)-\left(\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2015}{2^{2015}}\right)\)

\(\frac{1}{2}T=1+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}-\frac{2}{2^2}-\frac{3}{2^3}-\frac{4}{2^4}-...-\frac{2015}{2^{2015}}\)

\(\frac{1}{2}T=1+\left(\frac{3}{2^2}-\frac{2}{2^2}\right)+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+...+\left(\frac{2015}{2^{2014}}-\frac{2014}{2^{2014}}\right)-\frac{2015}{2^{2015}}\)

\(\frac{1}{2}T=1+\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\right)-\frac{2015}{2^{2015}}\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\)

\(2A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\)

\(2A-A=\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\right)\)

\(A=\frac{1}{2}-\frac{1}{2^{2014}}\)

Mà \(\frac{1}{2^{2014}}>0\)

\(\Rightarrow\)\(A=\frac{1}{2}-\frac{1}{2^{2014}}< \frac{1}{2}\)

\(\Leftrightarrow\)\(1+A-\frac{2015}{2^{2015}}< 1+\frac{1}{2}-\frac{1}{2^{2014}}-\frac{2015}{2^{2015}}\)

\(\Leftrightarrow\)\(\frac{1}{2}T< \frac{3}{2}-\left(\frac{1}{2^{2014}}+\frac{2015}{2^{2015}}\right)\)

Mà \(\frac{1}{2^{2014}}+\frac{2015}{2^{2015}}>0\)

\(\Rightarrow\)\(\frac{1}{2}T< \frac{3}{2}\)

\(\Rightarrow\)\(\frac{1}{2}T.2< \frac{3}{2}.2\)

\(\Rightarrow\)\(T< 3\) ( đpcm ) 

Vậy \(T< 3\)

Bạn xem đúng không nhé, chúc bạn học tốt ~

9 tháng 3 2018

thank

8 tháng 3 2018

bạn tham khảo tạm ở đây nhé

https://olm.vn/hoi-dap/question/994432.html

^^

8 tháng 3 2018

bạn tham khảo tại đây nhé

http://olm.vn/hoi-dap/question/994432.html

^-^

11 tháng 3 2022

1853567804232223

26 tháng 9 2016

Ta có:

\(\left(2015^{2015}+2016^{2015}\right)^{2016}=\left(2015^{2015}+2016^{2015}\right)^{2015}.\left(2015^{2015}+2016^{2015}\right)\)

\(>\left(2015^{2015}+2016^{2015}\right)^{2015}.2016^{2015}=\left[\left(2015^{2015}+2016^{2015}\right)2016\right]^{2015}\)

\(>\left(2015^{2015}.2015+2016^{2015}.2016\right)^{2015}=\left(2015^{2016}+2016^{2016}\right)^{2015}\)

Vậy \(\left(2015^{2015}+2016^{2015}\right)^{2016}>\left(2015^{2016}+2016^{2016}\right)^{2015}\)

23 tháng 9 2016

1. Ta sẽ chứng minh \(2015^{2016}>2016^{2015}\)

\(\Leftrightarrow2016^{2015}-2015^{2016}< 0\Leftrightarrow2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016.2016^{2016}-2015.2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016\left(2016^{2016}-2015^{2016}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016\left(2016^{2015}+2016^{2014}.2015+...+2015^{2015}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016^{2015}.2015+...+2016.2015^{2015}< 2014.2016^{2016}\)

\(\Leftrightarrow2016^{2014}.2015+2016^{2013}.2015^2+...+2015^{2015}< 2014.2016^{2015}\)

\(\Leftrightarrow2015^{2015}< \left(2016^{2015}-2015.2016^{2014}\right)+\left(2016^{2015}-2015^2.2016^{2013}\right)\)

\(+...+\left(2016^{2015}-2015^{2014}.2016\right)\)

\(\Leftrightarrow2015^{2015}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Lại có \(2015^{2015}=2014.2015^{2014}+2015^{2014}< 2014.2016^{2014}+2015^{2014}\)

Mà \(2015^{2014}< 2013.2016^{2014}.2015\)

nên \(2015^{2014}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Vậy \(2015^{2016}>2016^{2015}.\)