trong mp tọa độ Oxy cho đt (d):y=(k-1)x+2 và 2 điểm A( 0;2); B(-1;0)
tìm k để đt (d) cắt trục Ox tại điểm C sao cho diện tích tam giác OAC gấp 2 lần diệ tích t/g OAB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì (d) cắt trục Ox tại C nên ta có:
\(\hept{\begin{cases}\left(k-1\right)x+2=0\\y=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{2}{k-1}\\y=0\end{cases}}\)
\(\Rightarrow C\left(\frac{2}{k-1};0\right)\)
Ta có:
\(OA=\sqrt{0^2+2^2}=2\)
\(OB=\sqrt{\left(-1\right)^2+0^2}=1\)
\(OC=\sqrt{\left(\frac{2}{k-1}\right)^2+0^2}=\sqrt{\frac{4}{k^2-2k+1}}\)
Vì điện tích của \(S_{\Delta OAC}=2S_{\Delta OAB}\)
\(\Leftrightarrow\frac{1}{2}.OA.OC=2.\frac{1}{2}.OA.OB\)
\(\Leftrightarrow OC=2OB\)
\(\Leftrightarrow\sqrt{\frac{4}{k^2-2k+1}}=2.1\)
\(\Leftrightarrow\sqrt{k^2-2k+1}=1\)
\(\Leftrightarrow k^2-2k+1=1\)
\(\Leftrightarrow\orbr{\begin{cases}k=0\\k=2\end{cases}}\)
HD.OAB và OAC cùng đường cao OA
theo đề cần OC=2.OB=2
C co tọa độ là (0,+-2)
Từ đó => k; ồ mà mọi K y luôn đi qua C(0,2)--> đáp số mọi k
--> xem lại đề kiểu quái gì thế
Câu 1:
Gọi M(1;0) thuộc (d)
Theo đề, ta có: \(\overrightarrow{IM'}=k\cdot\overrightarrow{IM}\)
=>\(\left\{{}\begin{matrix}x_{M'}-1=k\cdot\left(1-1\right)=0\\y_{M'}=k\cdot\left(0-0\right)=0\end{matrix}\right.\)
=>M'(1;0)
Thay M' vào x+2y+c=0, ta được:
1+c=0
=>c=-1
Bài 1:
\(AB=\sqrt{\left(4+2\right)^2+\left(1+3\right)^2}=\sqrt{6^2+4^2}=2\sqrt{13}\)
\(A'B'=\dfrac{1}{2}\cdot AB=\dfrac{1}{2}\cdot2\sqrt{13}=\sqrt{13}\)
d nhận \(\overrightarrow{n_d}=\left(1;1\right)\) là 1 vtpt
Gọi \(\overrightarrow{n}=\left(a;b\right)\) là 1 vtpt của \(\Delta\), do d và \(\Delta\) tạo với nhau 1 góc 60 độ
\(\Rightarrow\dfrac{\left|a.1+b.1\right|}{\sqrt{1^2+1^2}.\sqrt{a^2+b^2}}=cos60^0=\dfrac{1}{2}\)
\(\Rightarrow\sqrt{2}\left|a+b\right|=\sqrt{a^2+b^2}\)
\(\Leftrightarrow2\left(a+b\right)^2=a^2+b^2\)
\(\Rightarrow a^2+4ab+b^2=0\)
Chọn \(a=1\Rightarrow\left[{}\begin{matrix}b=-2-\sqrt{3}\\b=-2+\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\) Có 2 đường thẳng \(\Delta\) thỏa mãn:
\(\left[{}\begin{matrix}1\left(x-2\right)-\left(2+\sqrt{3}\right)\left(y+6\right)=0\\1\left(x-2\right)-\left(2-\sqrt{3}\right)\left(y+6\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\left(2+\sqrt{3}\right)y-14-6\sqrt{3}=0\\x-\left(2-\sqrt{3}\right)y-14+6\sqrt{3}=0\end{matrix}\right.\)
Tương tự bài trước, ta có:
\(\dfrac{\left|a.1+b.1\right|}{\sqrt{2}.\sqrt{a^2+b^2}}=cos45^0=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\left|a+b\right|=\sqrt{a^2+b^2}\Leftrightarrow\left(a+b\right)^2=a^2+b^2\)
\(\Leftrightarrow2ab=0\Rightarrow\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)
Với \(a=0\) chọn \(b=1\) ; với \(b=0\) chọn \(a=1\), vậy có 2 đường thẳng thỏa mãn:
\(\left[{}\begin{matrix}0\left(x-2\right)+1\left(y+6\right)=0\\1\left(x-2\right)+0\left(y+6\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}y+6=0\\x-2=0\end{matrix}\right.\)