a) 5x^2 - 4xy - x^2y c) -2xy - 3x^2y^2 f) 6(y - x) + (x - y)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(a)\left(-3x^2y-2xy^2+6\right)+\left(-x^2y+5xy^2-1\right)\)
\(=-3x^2y-2xy^2+6+-x^2y+5xy^2-1\)
\(=\left(-3x^2y-x^2y\right)+\left(-2xy^2+5xy^2\right)+\left(6-1\right)\)
\(=-4x^2y+3xy^2+5\)
\(b)\left(1,6x^3-3,8x^2y\right)+\left(-2,2x^2y-1,6x^3+0,5xy^2\right)\)
\(=1,6x^3-3,8x^2y+-2,2x^2y-1,6x^3+0,5xy^2\)
\(=\left(1,6x^3-1,6x^3\right)+\left(-3,8x^2y+-2,2x^2y\right)+0,5xy^2\)
\(=-6x^2y+0,5xy^2\)
\(c)\left(6,7xy^2-2,7xy+5y^2\right)-\left(1,3xy-3,3xy^2+5y^2\right)\)
\(=6,7xy^2-2,7xy+5y^2-1,3xy+3,3xy^2-5y^2\)
\(=\left(6,7xy^2+3,3xy^2\right)+\left(-2,7xy-1,3xy\right)+\left(5y^2-5y^2\right)\)
\(=10xy^2+-4xy\)
\(=10xy^2-4xy\)
\(d)\left(3x^2-2xy+y^2\right)+\left(x^2-xy+2y^2\right)-\left(4x^2-y^2\right)\)
\(=3x^2-2xy+y^2+x^2-xy+2y^2-4x^2+y^2\)
\(=\left(3x^2+x^2-4x^2\right)+\left(-2xy-xy\right)+\left(y^2+2y^2+y^2\right)\)
\(=-3xy+4y^2\)
\(e)\left(x^2+y^2-2xy\right)-\left(x^2+y^2+2xy\right)+\left(4xy-1\right)\)
\(=x^2+y^2-2xy-x^2-y^2-2xy+4xy-1\)
\(=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(-2xy-2xy+4xy\right)-1\)
\(=-1\)
6) \(9x^3y^2+3x^2y^2=3x^2y^2\left(3x+1\right)\)
7) \(x^3+2x^2+3x=x\left(x^2+2x+3\right)\)
8) \(6x^2y+4xy^2+2xy=2xy\left(3x+2y+1\right)\)
9) \(5x^2\left(x-2y\right)-15x\left(x-2y\right)=5x\left(x-2y\right)\left(x-3\right)\)
10) \(3\left(x-y\right)-5x\left(y-x\right)=\left(x-y\right)\left(3+5x\right)\)
6) 9x3y2 + 3x2y2 = 3x2y2( 3x + 1 )
7) x3 + 2x2 + 3x = x( x2 + 2x + 3 )
8) 6x2y + 4xy2 + 2xy = 2xy( 3x + 2y + 1 )
9) 5x2( x - 2y ) - 15x( x - 2y ) = 5x( x - 2y )( x - 3 )
10 3( x - y ) - 5x( y - x ) = 3( x - y ) + 5x( x - y ) = ( x - y )( 3 + 5x )
a) \(3x^2-3y^2-x-y\)
\(\Leftrightarrow3\left(x^2-y^2\right)-x-y\)
\(\Leftrightarrow3\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(\Leftrightarrow3\left(x-y\right)\)
d) \(3x^2-7x+4\)
\(\Leftrightarrow3x^2-7x+7-3\)
\(\Leftrightarrow\left(3x^2-3\right)-\left(7x-7\right)\)
\(\Leftrightarrow3\left(x^2-1\right)-7\left(x-1\right)\)
\(\Leftrightarrow3\left(x-1\right)\left(x+1\right)-7\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(3\left(x+1\right)-7\right)\)
\(\Leftrightarrow\left(x+1\right)\left(3x-6\right)\)
e) \(-2x^2+3x-1\)
\(\Leftrightarrow\left(-2x^2-1^2\right)+3x\)
\(\Leftrightarrow\left(-2x-1\right)\left(-2x+1\right)+3x\)
f) \(x^2+2xy+y^2-2x-2y\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)\)
k) \(2x^2+5x+3\)
\(\Leftrightarrow2x^2+2x+3x+3\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)\)
\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)\)
l) \(x^2-2x-y^2+1\)
\(\Leftrightarrow\left(x^2-2x+1\right)-y^2\)
\(\Leftrightarrow\left(x-1\right)^2-y^2\)
\(\Leftrightarrow\left(x-1-y\right)\left(x-1+y\right)\)
a) \(3x^2-3y^2-x-y\)
\(\Leftrightarrow3\left(x^2-y^2\right)-x-y\)
\(\Leftrightarrow3\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(\Leftrightarrow3\left(x-y\right)\)
d) \(3x^2-7x+4\)
\(\Leftrightarrow3x^2-7x+7-3\)
\(\Leftrightarrow\left(3x^2-3\right)-\left(7x-7\right)\)
\(\Leftrightarrow3\left(x^2-1\right)-7\left(x-1\right)\)
\(\Leftrightarrow3\left(x-1\right)\left(x+1\right)-7\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(3\left(x+1\right)-7\right)\)
\(\Leftrightarrow\left(x+1\right)\left(3x-6\right)\)
e) \(-2x^2+3x-1\)
\(\Leftrightarrow\left(-2x^2-1^2\right)+3x\)
\(\Leftrightarrow\left(-2x-1\right)\left(-2x+1\right)+3x\)
f) \(x^2+2xy+y^2-2x-2y\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)\)
k) \(2x^2+5x+3\)
\(\Leftrightarrow2x^2+2x+3x+3\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)\)
\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)\)
l) \(x^2-2x-y^2+1\)
\(\Leftrightarrow\left(x^2-2x+1\right)-y^2\)
\(\Leftrightarrow\left(x-1\right)^2-y^2\)
\(\Leftrightarrow\left(x-1-y\right)\left(x-1+y\right)\)
c: Ta có: \(-2xy-3x^2y^2\)
\(=-2xy-3xy\cdot xy\)
\(=-xy\left(2+3xy\right)\)
a: Ta có: \(5x^2-4xy-x^2y\)
\(=x\left(5x-4y-xy\right)\)