giải phương trình với các số a ,b ,c biết \(\frac{x-a}{b+c}+\frac{x-b}{c+a}+\frac{x-c}{a+b}=3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\dfrac{x-a-b-c}{b+c}+\dfrac{x-b-a-c}{a+c}+\dfrac{x-c-a-b}{a+b}=0\)
\(\Leftrightarrow\left(x-a-b-c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=a+b+c\\\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=0\end{matrix}\right.\)
Xét \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=0\)
\(\Leftrightarrow\dfrac{\left(a+b\right)\left(b+c\right)+\left(b+c\right)\left(c+a\right)+\left(a+b\right)\left(a+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)ĐK: \(\left\{{}\begin{matrix}a\ne-b\\b\ne-c\\c\ne-a\end{matrix}\right.\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)+\left(c+a\right)\left(b+c\right)+\left(a+b\right)\left(a+c\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2+3\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)^2+ab+bc+ca=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=0\\ab+bc+ca=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}c=-\left(a+b\right)\\ab-\left(a+b\right)b-\left(a+b\right)a=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}c=-\left(a+b\right)\\ab+a^2+b^2=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c=0\)
Vậy với x=a+b+c hoặc a=b=c=0 thì pt thỏa mãn.
pt <=> \(\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}+\frac{4x+a+b+c}{a+b+c}=5\) (Cộng 4 vào mỗi vế)
<=> \(\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}+\frac{4x+a+b+c-5\left(a+b+c\right)}{a+b+c}=0\)
<=> \(\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}+\frac{4x-4a-4b-4c}{a+b+c}=0\)
<=> \(\left(a+b+c-x\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{4}{a+b+c}\right)=0\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng engel, ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}>\frac{4}{a+b+c}\)
=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{4}{a+b+c}>0\)
Vậy phương trình trên có nghiệm là
x = a + b + c
22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222
Áp dụng bđt \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\) ta có
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2\)
Bài 1. Đặt \(a=\sqrt{x+3},b=\sqrt{x+7}\)
\(\Rightarrow a.b+6=3a+2b\) và \(b^2-a^2=4\)
Từ đó tính được a và b
Bài 2. \(\frac{2x-1}{x^2}+\frac{y-1}{y^2}+\frac{6z-9}{z^2}=\frac{9}{4}\)
\(\Leftrightarrow\frac{2}{x}-\frac{1}{x^2}+\frac{1}{y}-\frac{1}{y^2}+\frac{6}{z}-\frac{9}{z^2}-\frac{9}{4}=0\)
Đặt \(a=\frac{1}{x},b=\frac{1}{y},c=\frac{1}{z}\)
Ta có \(2a-a^2+b-b^2+6c-9c^2-\frac{9}{4}=0\)
\(\Leftrightarrow-\left(a^2-2a+1\right)-\left(b^2-b+\frac{1}{4}\right)-\left(9c^2-6c+1\right)=0\)
\(\Leftrightarrow-\left(a-1\right)^2-\left(b-\frac{1}{2}\right)^2-\left(3c-1\right)^2=0\)
Áp dụng tính chất bất đẳng thức suy ra a = 1 , b = 1/2 , c = 1/3
Rồi từ đó tìm được x,y,z
\(\Leftrightarrow\left(\frac{x-b-c}{a}-1\right)+\left(\frac{x-c-a}{b}-1\right)+\left(\frac{x-a-b}{c}-1\right)=0\\ \)
\(\Leftrightarrow\left(x-p\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\)
=> x=p=(a+b+c)
Câu hỏi của Đỗ Văn Hoài Tuân - Toán lớp 8 - Học toán với OnlineMath