Cho x+ y = 2. Chứng minh rằng xy nhỏ hơn hoặc bằng 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x+y=2 -> x=2-y
ta có: xy=(2-y)y
=2y-y^2
=-y^2+2y-1+1
=-(y-1)^2+1
Vì (y-1)^2>=0 -> -(y-1)^2<=0(với mọi y)
-> -(y-1)^2+1 <=1(với mọi y)
Vậy xy<=1
ta có xy<=(x+y)^2/4
cm
<=> 4xy<=x^2+y^2+2xy
<=> (x^2+y^2-2xy)>=0
<=>(x-y)^2>=0 (dúng0)
áp dụng xy<=(x+y)^2/4=2^2/4=1
daứ = xảy ra là x=y=1
Vì x+y=2 \(\Rightarrow\) x=2-y
Ta có:
xy=(2-y)y
=2y-y^2
=-y^2+2y-1+1
= -(y-1)^2+1
Vì (y-1)^2\(\ge\)0 -> -(y-1)^2\(\le\)0(với mọi y)
\(\Rightarrow\) -(y-1)^2+1 \(\le\)1(với mọi y)
Vậy xy \(\le\)1
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) ( 1 )
\(\Leftrightarrow\left(\frac{1}{1+x^2}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{1+xy}\right)\ge0\)
\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+xy^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\frac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\) ( 2 )
\(\Rightarrow\)Bất đẳng thức ( 2 ) \(\Rightarrow\) Bất đẳng thức ( 1 )
( Dấu " = " xảy ra khi x = y )
Chúc bạn học tốt !!!
x+y=2
<=> x=2-y(1)
giả sử x*y≤1
<=>(2-y)y≤1
<=>y^2 - 2y +1≥0
<=> (y-1)^2≥0
<=>y≥1(2)
từ (1),(2)=> x*y≤1
x+y=2
\(\Rightarrow\)x=1; x=0; x=-1; x=-2;...
y=1; y=2; y=3; y=4;...
\(\Rightarrow\)x.y= 1.1=1=1
0.2=0<1
-1.3=-3<1
-2.4=-8<1
.............
\(\Rightarrow\)Nếu x+y=2 thì x.y\(\le\)1
Ta có: \(x+y=2\)
\(\Rightarrow x=2-y.\)
Có: \(x.y=\left(2-y\right).y\)
\(\Rightarrow x.y=2y-y^2\)
\(\Rightarrow x.y=-y^2+2y-1+1\)
\(\Rightarrow x.y=-\left(y-1\right)^2+1.\)
Vì \(\left(y-1\right)^2\ge0\) \(\forall y.\)
\(\Rightarrow-\left(y-1\right)^2\le0\) \(\forall y.\)
\(\Rightarrow-\left(y-1\right)^2+1\le1\) \(\forall y.\)
\(\Rightarrow x.y\le1\left(đpcm\right).\)
Chúc bạn học tốt!
Câu a)
Ta có a + b \(\ge\)1 => a \(\ge\) 1 - b
Nên a2 + b2 \(\ge\) (1 - b)2 + b2 = 2b2 - 2b + 1 = 2(b2 - 2b.1/2 + 1/4 + 1/2) = 2(b - 1/2)2 + 1 \(\ge\) 1
Câu b) Áp dụng BĐT Bunhiacopxki ta có
(x + y)2 = (1.x + 1.y)2 \(\le\) (12 + 12)(x2 + y2) = 2.1 = 2
Dấu "=" xảy ra <=> x = y
câu1 : cần sửa lại là A2 + B2 \(\ge\frac{1}{2}\)
Ta chứng minh được : (A+B)2 \(\le2.\left(A^2+B^2\right)\) (*)
<=> A2 + B2 + 2A.B \(\le\) 2. (A2 + B2)
<=> 0 \(\le\) A2 + B2 - 2.A.B <=> 0 \(\le\) (A-B)2 luôn đúng => (*) đúng
b) Áp sung câu a => (x+y)2 \(\le\)2.(x2 + y2) = 2 => đpcm
\(x+y=2\)
\(\Leftrightarrow x=2-y\left(1\right)\)
Giả sử: \(x.y\le1\)
\(\Leftrightarrow\left(2-y\right).y\le1\)
\(\Leftrightarrow y^2-2.y+1\ge0\),
\(\Leftrightarrow\left(y-1\right)^2\ge0\)
\(\Leftrightarrow y\ge1\)
Từ (1) và (2) suy ra:\(x.y\le1\)
(2) ở đâu bnNguyễn Phương Trâm