1 . rút gọn 3(2^2+1)(2^4+1)(2^8+1)(2^32+1)(2^64+1)(2^128+1)
2 . Cho a+b+c=0 và a^2+b^2+c^2=10. Tính 1/a^4+b^4+c^4
3 . giải phương trình x^2+1/x^2+y^2+1/y^2=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Đặt \(2017-x=a;2019-x=b;2x-4036=c\)
\(\Rightarrow a+b+c=0\)
Do \(a+b+c=0\Rightarrow a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\)
Có : \(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3=-c^3-3ab.\left(-c\right)+c^3=3abc\)
Do \(\left(2017-x\right)^3+\left(2019-x\right)^3+\left(2x-4036\right)^3=0\)
\(\Rightarrow3\left(2017-x\right)\left(2019-x\right)\left(2x-4036\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2017-x=0\\2019-x=0\\2x-4036=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2019\\x=2018\end{matrix}\right.\)
Đăng từng bài thôi nha bạn
Bài 1 :
\(A=\left(2x-1\right)^2+2\left(2x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)
\(A=\left(2x-1+2x+1\right)^2\)
\(A=\left(4x\right)^2\)
\(A=16x^2\)
Câu B mình không hiểu đề cho lắm
Bài 2 :
\(a)\) \(\left(x-1\right)\left(x+1\right)-\left(x+1\right)^2=4\)
\(\Leftrightarrow\)\(x^2-1-\left(x+1\right)^2=4\)
\(\Leftrightarrow\)\(\left(x-x-1\right)\left(x+x+1\right)=4+1\)
\(\Leftrightarrow\)\(\left(-1\right)\left(2x+1\right)=5\)
\(\Leftrightarrow\)\(2x+1=-5\)
\(\Leftrightarrow\)\(2x=-6\)
\(\Leftrightarrow\)\(x=-3\)
Vậy \(x=-3\)
Chúc bạn học tốt ~
1/ \(3\left(2^2+1\right)\left(2^4+1\right)...\left(2^{128}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{128}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{128}+1\right)\)
..................................................................
\(=\left(2^{128}-1\right)\left(2^{128}+1\right)=2^{256}-1\)
2/ Ta có: \(a+b+c=0\Leftrightarrow a+b=-c\)
\(\Leftrightarrow a^2+2ab+b^2=c^2\Leftrightarrow a^2+b^2-c^2=-2ab\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2=4a^2b^2\)
\(\Leftrightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)
Ta lại có: \(a^2+b^2+c^2=10\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=100\)
\(\Leftrightarrow2\left(a^4+b^4+c^4\right)=100\Leftrightarrow a^4+b^4+c^4=50\)
\(\Leftrightarrow\frac{1}{a^4+b^4+c^4}=\frac{1}{50}\)