Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)
\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)
\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)
Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)
tương tự
\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)
\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)
\(< =>95-24x+40=6-4x-15x+5\)
\(< =>-24x+135=-19x+11\)
\(< =>5x=135-11=124\)
\(< =>x=\frac{124}{5}\)
Ta có:
2(a − 1)x − a(x − 1) = 2a + 3
⇔(a − 2)x = a + 3 (3)
Do đó, khi a = 2, phương trình (2) tương đương với phương trình 0x = 5.
Phương trình này vô nghiệm nên phương trình (2) vô nghiệm.
Theo điều kiện của bài toán, nghiệm của phương trình (2) bằng một phần ba nghiệm của phương trình (1) nên nghiệm đó bằng 2.
Suy ra, phương trình (3) có nghiệm x = 2
Thay giá trị x = 2 vào phương trình này, ta được (a − 2)2 = a + 3.
Ta coi đây là phương trình mới đối với ẩn a. Giải phương trình mới này: (a − 2)2 = a + 3 ⇔ a = 7
Khi a = 7, dễ thử thấy rằng phương trình (a − 2)x = a + 3 có nghiệm x = 2, nên phương trình (2) cũng có nghiệm x = 2.
a Để phương trình (1) là pt bậc nhất 1 ẩn thì m-2<>0
=>m<>2
b: 3x+7=2(x-1)+8
=>3x+7=2x-2+8=2x+6
=>x=-1
Thay x=-1 vào (1), ta được:
2(m-2)*(-1)+3=3m-13
=>-2m+2+3=3m-13
=>-5m=-13-2-3=-15-3=-18
=>m=18/5
Bài 1 :
\(\frac{4x-5}{x-1}=\frac{2+x}{x-1}\)ĐK : x \(\ne\)1
\(\Leftrightarrow\frac{4x-5}{x-1}-\frac{2-x}{x-1}=0\Leftrightarrow\frac{4x-5-2+x}{x-1}=0\)
\(\Rightarrow5x-7=0\Leftrightarrow x=\frac{7}{5}\)( tmđk )
Vậy tập nghiệm của phuwong trình là S= { 7/5 }
b, \(\frac{x-1}{x-2}-3+x=\frac{1}{x-2}\)ĐK : x \(\ne\)2
\(\Leftrightarrow\frac{x-1}{x-2}-\left(3-x\right)=\frac{1}{x-2}\)
\(\Leftrightarrow\frac{x-1}{x-2}-\frac{\left(3-x\right)\left(x-2\right)}{x-2}=\frac{1}{x-2}\)
\(\Leftrightarrow\frac{x-1-3x+6+x^2-2x-1}{x-2}=0\)
\(\Rightarrow x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)( ktmđkxđ )
Vậy phương trình vô nghiệm
c, \(1+\frac{1}{2+x}=\frac{12}{x^3+8}\)ĐK : x \(\ne\)-2
\(\Leftrightarrow\frac{\left(x+2\right)\left(x^2-2x+4\right)+x^2-2x+4-12}{\left(x+2\right)\left(x^2-2x+4\right)}=0\)
\(\Rightarrow x^3+8+x^2-2x+4-12=0\)
\(\Leftrightarrow x^3+x^2-2x=0\Leftrightarrow x\left(x^2+x-2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+2\right)=0\Leftrightarrow x=0;x=1;x=-2\left(ktm\right)\)
Vậy tập nghiệm của phương trình là S = { 0 ; 1 }
d, đưa về dạng hđt
Bài 2 : làm tương tự, chỉ khác ở chỗ mẫu số phức tạp hơn tí thôi