Cho hình bình hành ABCD , đường chéo BD . Kẻ AH và CK vuông góc với BD tại H và K
. Chứng minh tứ giác AHCK là hình bình hành.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh AH//CK, AH = CK (DAHD = DCKB) Þ AHCK là hình bình hành (cặp cạnh đối song song và bằng nhau)
ta có : hai tam giác ABD bằng CND ( do ABCD là hình bình hành nên )
\(S_{ABD}=S_{CBD}\Leftrightarrow\frac{1}{2}AH.BD=\frac{1}{2}CK.BD\Rightarrow AH=CK\)
mà AH song song với CK (do cùng vuông góc với BD)
nên AHCK là hình bình hành
Giải thích các bước giải:
Ta có tứ giác ABCD là hình bình hành
=>AD// và =BC
AD//BC,cát tuyến BD
=>∠ADH=∠KBC(so le trong)
XétΔAHD và ΔBKC
·∠AHD=∠BKC=90 độ
·∠ADH=∠KBC
.AD=BC
=>ΔAHD = ΔBKC(ch+gn)
b)=>AH=CK(2 cạnh tương ứng của 2Δ=nhau) (1)
ta có AH⊥BD
CK⊥BC
=>AH//CK (2)
Từ (1) và (2) =>đpcm (theo tc đoạn chắn)
~ Chúc bn Thành Công trong HT ạ ~
Xem ở đây nha:
Cho hình bình hành ABCD, Gọi H và K lần lượt là hình chiếu của A và C lên đường chéo BD. a) Chứng minh AHCK là hình bình hành. b) Gọi O là trung điểm của HK. Chứng minh ba điểm A, O, C thẳng hàng - Toán học Lớp 8 - Bài tập Toán học Lớp 8 - Giải bài tập Toán học Lớp 8 | Lazi.vn - Cộng đồng Tri thức & Giáo dục
Xét tam giác vuông ADH & tam giác vuông CKB:
AD = BC ( ABCD là hbh)
góc D1= góc B1 ( so le trong)
=> tam giác vuông = tam giác vuông CKB ( cạnh hyền - góc nhọn)
=> AH = CK ( 2 cạnh t/ứng)
Xét tứ giác AHCK :
AH = CK (cmt)
AH // CK ( cùng vuông góc vs BD)
=> AHCK là hình bình hành ( đn)