K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
9 tháng 9 2021

undefined

ta có : hai tam giác ABD bằng CND ( do ABCD là hình bình hành nên )

\(S_{ABD}=S_{CBD}\Leftrightarrow\frac{1}{2}AH.BD=\frac{1}{2}CK.BD\Rightarrow AH=CK\)

mà AH song song với CK  (do cùng vuông góc với BD) 

nên AHCK là hình bình hành

9 tháng 9 2021

     

Giải thích các bước giải:

Ta có tứ giác ABCD là hình bình hành 

=>AD// và =BC

AD//BC,cát tuyến BD

=>∠ADH=∠KBC(so le trong)

XétΔAHD và ΔBKC

·∠AHD=∠BKC=90 độ

·∠ADH=∠KBC

.AD=BC

=>ΔAHD = ΔBKC(ch+gn)

b)=>AH=CK(2 cạnh tương ứng của 2Δ=nhau) (1)

ta có AH⊥BD

CK⊥BC

=>AH//CK (2)

Từ (1) và (2) =>đpcm (theo tc đoạn chắn)

~ Chúc bn Thành Công trong HT ạ ~ 

26 tháng 8 2021

Xét tg DKC và tg BHA có H=K =90 đỘ

                                         DC=AB( hbh ABCD)

                                         ABH=CBK( hbh ABCD, AB//DC)

Suy ra tg DKC=tg BHA( ch-gn)

=> CK=AH( 2 cạnh t/ư)

Ta có : AH vg góc DB

           CK vg góc DB

=> CK//AH

Xét tg AKCH có CK//AH(cmt)

                          CK=AH( cmt)

=> AKCH là hbh( dấu hiệu 3)

 

 

9 tháng 12 2018

Ta chứng minh AH//CK, AH = CK (DAHD = DCKB) Þ AHCK là hình bình hành (cặp cạnh đối song song và bằng nhau)

27 tháng 9 2018

Xem ở đây nha: 

Cho hình bình hành ABCD, Gọi H và K lần lượt là hình chiếu của A và C lên đường chéo BD. a) Chứng minh AHCK là hình bình hành. b) Gọi O là trung điểm của HK. Chứng minh ba điểm A, O, C thẳng hàng - Toán học Lớp 8 - Bài tập Toán học Lớp 8 - Giải bài tập Toán học Lớp 8 | Lazi.vn - Cộng đồng Tri thức & Giáo dục

27 tháng 9 2018

A B C D K H 1 1

Xét tam giác vuông ADH & tam giác vuông CKB:

AD = BC ( ABCD là hbh)

góc D1= góc B1 ( so le trong)

=> tam giác vuông = tam giác vuông CKB ( cạnh hyền - góc nhọn)

=> AH = CK ( 2 cạnh t/ứng)

Xét tứ giác AHCK :

AH = CK (cmt)

AH // CK ( cùng vuông góc vs BD)

=> AHCK là hình bình hành ( đn)