Tập hợp các số tự nhiên n sao cho n thỏa mãn điều kiện sau (n2 + n +4)\(⋮\) ( n+1) là ...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(n^2+n+4\right)⋮n+1\)
\(\Rightarrow n.n+n+4⋮n+1\)
\(\Rightarrow n.\left(n+1\right)+4⋮n+1\)
Vì n(n + 1) \(⋮\)n+ 1 nên 4 \(⋮\)n + 1
=> n \(\in\)Ư(4) = {1;2;4}
ta có: n2 + n + 4 chia hết cho n+1
=> n .( n+1) +4 chia hết cho n+1
mà n.(n+1) chia hết cho n+1
=> 4 chia hết cho n+1
\(\Rightarrow n+1\inƯ_{\left(4\right)}=\left(1;-1;2;-2;4;-4\right)\)
nếu n+1 = 1 => n = 0 (TM)
n+1= -1 => n= -2 ( Loại)
n+1 = 2=> n = 1 ( TM)
n+1 = -2 => n = - 3 (Loại)
n+1= 4 => n = 3 ( TM)
n+1 = -4 => n= - 5 ( Loại)
=> n thuộc ( 0;1;3)
=> có 3 phần tử của tập hợp các số tự nhiên n
Goi số cần tìm là: a( a là số tự nhiên)
Theo bài ra ta có:
a chia 4 ( dư 3 ) ; a chia 3 ( dư 2 ) ; a chia 2 ( dư 1)
a+1 chia hết cho 4 ; a+1 chia hết cho 3 ; a+1 chia hết cho 2
Vì a nhỏ nhất có thể suy ra a+1 nhỏ nhất có thể
Suy ra a+1=12
a=12-1=11(thỏa mãn)
Vậy số cần tìm là 11
Goi số cần tìm là: a( a là số tự nhiên)
Theo bài ra ta có:
a chia 4 ( dư 3 ) ; a chia 3 ( dư 2 ) ; a chia 2 ( dư 1)
a+1 chia hết cho 4 ; a+1 chia hết cho 3 ; a+1 chia hết cho 2
Vì a nhỏ nhất có thể suy ra a+1 nhỏ nhất có thể
Suy ra a+1=12
a=12-1=11(thỏa mãn)
Vậy số cần tìm là 11
Mọi người tk cho mình nhé. Mình cảm ơn nhiều ^-^
Ta goi số đó là a (a khác 0; a là số tự nhiên)
Vì a : 4 dư 3; a : 3 dư 2; a : 2 dư 1 => (a + 1) chia hết cho 2, 3, 4
Số bé nhất chia hết cho 2, 3, 4 là 12
Vậy a = 12 - 1 = 11
Đáp số : 11
A=n2+n+n+1+3=n(n+1)+(n+1)+3=(n+1)(n+1)+3=(n+1)2+3
=> để A chia hết cho n+1 thì 3 phải chia hết cho n+1
=> n+1={1; 3}
=> n={0, 2}
n2 + n + 4 chia hết cho n+1
n(n+1) +4 chia hết cho n+1
mà n(n+1) chia hết cho n+1
<=> 4 chia hết cho n+1
n+1 thuộc Ư(4) = {1 ; 2 ;4}
n+1 = 1 => n = 0
n+1 = 2 => n = 1
n+1 = 4 => n = 3
Vậy n thuộc { 0; 1 ; 3 }
Đúng thì k cho mik vs nha
Đặt phép chia ta có: \(\left(n^2+n+4\right):\left(n+1\right)=n\) dư 4
\(\Rightarrow A=B+\frac{Q}{R}=n+\frac{4}{n+1}\)
\(\Rightarrow\left(n+1\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta có bảng sau:
Vậy \(x\in\left\{0;1;2\right\}\)
cho mk hỏi Q:R là j vậy