Câu: Cho hình chữ nhật ABCD. Trên tia đối của tia DA và trên tia đối tia CB lần lượt lấy điểm M và N sao cho DM = CN = CD. Trên tia đối của CD lấy điểm P sao cho CP=BC. Chứng minh rằng MP vuông góc với AN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Hồ Văn Đạt - Toán lớp 8 - Học toán với OnlineMath
Phạm Hồ Thanh Quang
- Kéo dài AM, cắt CD tại K.
- Theo đ/l menelaus:
trong tam giac BCN, đt AK cắt BC tại M, CN tại K và BN tại I. Nên:
MB/MC * KC/KN*IN/IB =1 (độ dài đại số)
+ MB/MC=-1/2
+KC/KN = 4/3 (dễ cm từ talet)
Nên IN/IB=-3/2
- Xét tam giác KMC và CMI:
Có: M chung
MC/MI = MK/CM
(MK/CM= căn 10 (1)
kẻ: IP vuông BC. Có: IP/CN = BI/BN=2/5 nên IP=2/5*a/2=a/5
tương tự, BP/BC=2/5 nên BP=2a/5
mà: BM=a/3 nên MP = a/15
do đó: MI = a(2/45)^(0.5)
MC=2a/3 nên MC/MI= căn 10 (2) )
(1) và (2) suy ra 2 tam giác đồng dạng
Do đó góc C = góc I = 90 độ
Do đó I thuộc đường tròn ngoại tiếp hv ABCD.
Cách giải của bạn có phải lớp 8 không bạn, thấy nó xa vời quá, nhưng bạn không có cách khác thì thôi, cám ơn bạn
Vẽ hình chữ nhật NMCS ( như hình vẽ ).
Có \(\widehat{NMF}+\widehat{NMS}=\widehat{FMS}\)
\(\Rightarrow\widehat{FMS}=90^o+90^o=180^o\); hay F , M , S thẳng hàng
Tứ giác \(BFCS\)có 3 góc vuông nên là hình chữ nhật.
\(\Rightarrow CS=BF\)( 2 cạnh đối )
Lại có \(MS=NC\)
Do \(BFMN\)là hình chữ nhật nên \(BN=BF\Rightarrow BN=CG=CS\)
Đồng thời suy ra \(NC=BE\left(=BC-BN=AB-AE\right)\)
\(\Rightarrow BE=MS\)
Lại có \(BG=DS\) do \(BC+CG=DC+CS\)
Xét \(\Delta DSM\) và \(\Delta GBE\) có :
\(DS=BG\)
\(\widehat{DSM}=\widehat{GBE}=90^o\)
\(MS=BE\)
\(\Rightarrow\Delta DSM=\Delta GBE\left(c.g.c\right)\)
\(\Rightarrow DM=EG\)(2 cạnh tương ứng )
\(\widehat{SDM}=\widehat{BGE}\)( 2 góc tương ứng)
Gọi \(\hept{\begin{cases}DS\cap EG=\left\{O\right\}\\DM\cap EG=\left\{O'\right\}\end{cases}}\Rightarrow\widehat{O'DO}=\widehat{OGC}\)
Xét \(\Delta ODO'\) và \(\Delta OGC:\)
\(\widehat{O'DO}+\widehat{DO'O}+\widehat{DOO'}=\widehat{OGC}+\widehat{OCG}+\widehat{COG}=180^o\)
Mà \(\widehat{O'DO}=\widehat{OGC}\) và \(\widehat{DOO'}=\widehat{COG}\)( Đối đỉnh )
\(\Rightarrow\widehat{DO'O}=\widehat{OCG}\)
Mà \(\widehat{OCG}=90^o\Rightarrow\widehat{DO'O}=90^o\)
\(\Rightarrow DM\perp EG\)
Vậy ...
a: Xét ΔABC có \(\widehat{B}=\widehat{C}\)
nên ΔABC cân tại A
b: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN