cho hàm số \(y=\dfrac{x+2}{x-3}\left(C\right)\). Có tất cả bao nhiêu điểm M thuộc (C) sao cho khoảng cách từ M đến tiệm cận ngang bằng 5 lần khoảng cách từ M đến tiệm cận đứng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử M( x o ; y o ) ∈ (C). Gọi d 1 là khoảng cách từ M đến tiệm cận đứng và d 2 là khoảng cách từ M đến tiệm cận ngang, ta có:
Có hai điểm thỏa mãn đầu bài, đó là hai điểm có hoành độ x o = 3 + 5 hoặc x o = 3 - 5
Xét \(M\left(m;1+\frac{5}{m-3}\right)\) thuộc đồ thị đã cho
Theo yêu cầu bài tài <=> \(\left|m-3\right|=\left|\frac{5}{m-3}\right|\Leftrightarrow m=3\pm\sqrt{5}\)
Vậy \(M\left(3\pm\sqrt{5};1\pm\sqrt{5}\right)\)
Đồ thị hàm nhận \(x=1\) là tiệm cận đứng
Gọi \(M\left(a;b\right)\Rightarrow b=\dfrac{2a+1}{a-1}\)
Khoảng cách từ M đến trục hoành: \(\left|y_M\right|=\left|b\right|\)
Khoảng cách từ M đến tiệm cận đứng: \(\left|x_M-1\right|=\left|a-1\right|\)
Ta được hệ: \(\left\{{}\begin{matrix}b=\dfrac{2a+1}{a-1}\\\left|b\right|=\left|a-1\right|\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(0;-1\right);\left(4;3\right)\)
Có 2 điểm M thỏa mãn: \(\left[{}\begin{matrix}M\left(0;-1\right)\\M\left(4;3\right)\end{matrix}\right.\)
Hàm nhận \(x=3\) là tiệm cận đứng và \(y=1\) là tiệm cận ngang
Gọi \(M\left(a;b\right)\Rightarrow b=\dfrac{a+2}{a-3}\)
Khoảng cách đến tiệm cận đứng: \(\left|x_M-3\right|=\left|a-3\right|\)
Khoảng cách đến tiệm cận ngang: \(\left|y_M-1\right|=\left|b-1\right|\)
Ta có hệ: \(\left\{{}\begin{matrix}b=\dfrac{a+2}{a-3}\\\left|b-1\right|=5\left|a-3\right|\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(4;6\right)\\M\left(2;-4\right)\end{matrix}\right.\) có 2 điểm