Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử M( x o ; y o ) ∈ (C). Gọi d 1 là khoảng cách từ M đến tiệm cận đứng và d 2 là khoảng cách từ M đến tiệm cận ngang, ta có:
Có hai điểm thỏa mãn đầu bài, đó là hai điểm có hoành độ x o = 3 + 5 hoặc x o = 3 - 5
\(y=\frac{2x+1}{x-1}=\frac{2x-2+3}{x-1}=2+\frac{3}{x-1}\)
Để y nguyên \(\Rightarrow\frac{3}{x-1}\) nguyên \(\Rightarrow x-1=Ư\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x=\left\{-2;0;2;4\right\}\) \(\Rightarrow y=\left\{1;-1;5;3\right\}\)
Do y nguyên dương nên ta chỉ có các điểm thỏa mãn là:
\(\left(-2;1\right);\left(2;5\right);\left(4;3\right)\)
Tiệm cận đứng: \(x=1\) ; tiệm cận ngang \(y=2\)
\(\Rightarrow\) Có 2 điểm \(\left(-2;1\right)\) và \(\left(4;3\right)\) thỏa mãn k/c đến tiệm cận đứng gấp 3 khoảng cách đến tiệm cận ngang
Hàm nhận \(x=3\) là tiệm cận đứng và \(y=1\) là tiệm cận ngang
Gọi \(M\left(a;b\right)\Rightarrow b=\dfrac{a+2}{a-3}\)
Khoảng cách đến tiệm cận đứng: \(\left|x_M-3\right|=\left|a-3\right|\)
Khoảng cách đến tiệm cận ngang: \(\left|y_M-1\right|=\left|b-1\right|\)
Ta có hệ: \(\left\{{}\begin{matrix}b=\dfrac{a+2}{a-3}\\\left|b-1\right|=5\left|a-3\right|\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(4;6\right)\\M\left(2;-4\right)\end{matrix}\right.\) có 2 điểm
a) Học sinh tự làm.
b) Tiệm cận đứng là đường thẳng x = 3.
Tiệm cận ngang là đường thẳng y = 1.
Do đó, giao điểm của hai đường tiệm cận là I(3; 1). Thực hiện phép biến đổi:
Ta được
Vì Y = 5/X là hàm số lẻ nên đồ thị (C) của hàm số này có tâm đối xứng là gốc tọa độ I của hệ tọa độ IXY.
c) Giả sử M(x0; y0) ∈ (C). Gọi d1 là khoảng cách từ M đến tiệm cận đứng và d2 là khoảng cách từ M đến tiệm cận ngang, ta có:
Có hai điểm thỏa mãn đầu bài, đó là hai điểm có hoành độ x0 = 3 + 5 hoặc x0 = 3 - 5
Xét \(M\left(m;1+\frac{5}{m-3}\right)\) thuộc đồ thị đã cho
Theo yêu cầu bài tài <=> \(\left|m-3\right|=\left|\frac{5}{m-3}\right|\Leftrightarrow m=3\pm\sqrt{5}\)
Vậy \(M\left(3\pm\sqrt{5};1\pm\sqrt{5}\right)\)
b) Tiệm cận đứng là đường thẳng \(x=3\)
Tiệm cận ngang là đường thẳng \(y=1\)
Đáp án A
Gọi
với a ≢ 1 .
Tiệm cận đứng của (C) là x-1.
Ta có . Vậy .