giá trị lớn nhất của biểu thức B= 12- l3x+2015l+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
: B=12- l3x+2015l - l-3l = 12- l3x+2015l - 3 = 9 - l3x+2015l
.Có l3x+2015l >= 0 Vx => - l3x+2015l <= 0 Vx
=> 9 - l3x+2015l >= 9
Dấu = xảy ra <=> 3x + 2015 = 0
<=> 3x = -2015
<=> x = -2015 / 3
Vậy Bmax <=> x = -2015 / 3
B=12-3-|3x+2015|=9-|3x+2015<=9
GTLN của B=9 khi 3x+2015=0
x=-2015/3
A=l3x+7l+12( baj này tìm GTNN nha bạn)
vì l3x+7l\(\ge\)0
=>A=l3x+7l+12\(\ge\)12
vậy GTNN của A là 12 tại 3x+7=0
3x=-7
x=-7/3
Vì \(!3x+7!\ge0\) với mọi x => \(!3x+7!+12\ge0+12=12\)
Vậy GTNN là 12 khi 3x + 7 = 0 => x = -7/3
Nếu mà GTLN thì x càng lớn thì bt cằng l;ớn Sai đề ròi phải là GTNN cơ
/x-3/>=0\(\Rightarrow\)-/x-3/<=0 maxP=12 khi x-3=0 \(\Rightarrow\)x=3
\(P=-\left|x-3\right|+12\)
Vì \(-\left|x-3\right|\le0\Leftrightarrow-\left|x-3\right|+12\le12\)
Vậy GTLN của P là 12 tại \(-\left|x-3\right|=0\Leftrightarrow x=0\)
Xét \(\sqrt{x^2-6x+10}=\sqrt{\left(x-3\right)^2+1}\ge1\)
=> B \(\le11\)
Dấu "=" <=> x = 3