Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B= 12 - |3x + 2015| - |-3| = 12 - |3x + 2015| - 3 = 12 - 3 - |3x + 2015| = 9 - |3x + 2015|
Do |3x + 2015| \(\ge\)0 => -|3x + 2015|\(\le\)0
=> 9 + (-|3x + 2015|) \(\le\)9 => 9 - |3x + 2015| \(\le\)9
Đẳng thức xảy ra khi: |3x + 2015| = 0 => 3x + 2015 = 0 => 3x = 0 - 2015 => 3x = -2015 => x = \(\frac{-2015}{3}\)
Vậy giá trị lớn nhất của B là 9 khi x = \(\frac{-2015}{3}\)
12-|3x+2015|-|-3|
=12-|3x+2015|+3
=B < 9
hay Bmax=9
<=>3x+2015=0
<=>....
Bài 1:
Ta có: \(6.|3x-12|\ge0\forall x\)
\(\Rightarrow23+6.|3x-12|\ge23+0\forall x\)
Hay \(A\ge23\forall x\)
Dấu"=" xảy ra \(\Leftrightarrow3x-12=0\)
\(\Leftrightarrow x=4\)
Vậy Min A=23 \(\Leftrightarrow x=4\)
Bài 2:
Ta có: \(5.|14-7x|\ge0\forall x\)
\(\Rightarrow-5.|14-7x|\le0\forall x\)
\(\Rightarrow2019-5.|14-7x|\le2019-0\forall x\)
Hay \(B\le2019\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow14-7x=0\)
\(\Leftrightarrow x=2\)
Vậy Max B=2019 \(\Leftrightarrow x=2\)
\(E=\left(2x-5\right)^{10}-12\ge-12\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)
Vậy \(E_{min}=-12\Leftrightarrow x=\dfrac{5}{2}\)
\(F=\left(x+5\right)^8+\left|x+5\right|+22\ge22\)
Dấu "=" xảy ra \(\Leftrightarrow x=-5\)
Vậy \(F_{min}=22\Leftrightarrow x=-5\)
\(G=17-\left|3x-2\right|\)
Dấu "=" xảy ra \(x=\dfrac{2}{3}\)
Vậy \(G_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)
\(K=17-\left|3x-2\right|-\left(2-3x\right)^{2020}\le17\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{2}{3}\)
Vậy \(K_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)