K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2016

Ta thấy:\(\begin{cases}x^{2016}\ge0\\\left|y-2015\right|\ge0\\\sqrt{z^2+4}\end{cases}\)

\(\Rightarrow x^{2016}+\left|y-2015\right|+\sqrt{z^2+4}\ge0\)

Để \(x^{2016}+\left|y-2015\right|+\sqrt{z^2+4}=0\)

\(\Rightarrow\begin{cases}x^{2016}=0\\\left|y-2015\right|=0\\\sqrt{z^2+4}=0\end{cases}\).Vì \(\sqrt{z^2+4}=0\Leftrightarrow z^2+4=0\), có:

\(z^2+4\ge4>0\) (loại)

Suy ra không tồn tại x,y,z thỏa mãn

 

18 tháng 12 2016

khó hiểu làm sao ?

18 tháng 12 2016

Đề chỉ nhiêu đâu thôi hả

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

1.

ĐKXĐ: $x\geq 1; y\geq 2; z\geq 3$

PT \(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)

\(\Leftrightarrow [(x-1)-2\sqrt{x-1}+1]+[(y-2)-4\sqrt{y-2}+4]+[(z-3)-6\sqrt{z-3}+9]=0\)

\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{y-2}-2)^2+(\sqrt{z-3}-3)^2=0\)

\(\Rightarrow \sqrt{x-1}-1=\sqrt{y-2}-2=\sqrt{z-3}-3=0\)

\(\Leftrightarrow \left\{\begin{matrix} x=2\\ y=6\\ z=12\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

2.

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow \sqrt{x+1}=1-\sqrt{x}$

$\Rightarrow x+1=(1-\sqrt{x})^2=x+1-2\sqrt{x}$

$\Leftrightarrow 2\sqrt{x}=0$

$\Leftrightarrow x=0$

Thử lại thấy thỏa mãn 

Vậy $x=0$

 

23 tháng 2 2016

ai đó làm giúp mình , mình tích cho

23 tháng 2 2016

nhân 2 vế cho 2

=>2x2+2y2+2z2=2xy+2yz+2zx

=>2x2+2y2+2z2-2xy-2yz-2zx=0

=>(2x2-2xy)+(2y2-2yz)+(2z2-2zx)=0

=>(x-y)2+(y-z)2+(z-x)2=0

mà (x-y)2 >= 0 với mọi x,y

(y-z)2 >= 0 với mọi y,z

(z-x)2 >=0 với mọi z,x

=>(x-y)2+(y-z)2+(z-x)2 >= 0

mà theo đề:(x-y)2+(y-z)2+(z-x)2=0

=>(x-y)2=(y-z)2=(z-x)2=0

=>x=y

   y=z

   z=x

hay x=y=z

do đó x2015+y2015+z2015=32016

<=>x2015+x2015+x2015=32016

<=>3x2015=32016<=>x2015=32016:3=32015<=>x=2015

Vậy x=y=z=2015

16 tháng 8 2021

Đặt \(a=\sqrt{x-2015};b=\sqrt{y-2016};c=\sqrt{z-2017}\left(a,b,c>0\right)\)

Khi đó phương trình trở thành: 

\(\dfrac{a-1}{a^2}+\dfrac{b-1}{b^2}+\dfrac{c-1}{c^2}=\dfrac{3}{4}\\ \Leftrightarrow\left(\dfrac{1}{4}-\dfrac{1}{a}+\dfrac{1}{a^2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{b}+\dfrac{1}{b^2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{c}+\dfrac{1}{c^2}\right)=0\\ \Leftrightarrow\left(\dfrac{1}{2}-\dfrac{1}{a}\right)^2+\left(\dfrac{1}{2}-\dfrac{1}{b}\right)^2+\left(\dfrac{1}{2}-\dfrac{1}{c}\right)^2=0\\ \Leftrightarrow a=b=c=2\\ \Leftrightarrow x=2019;y=2020;z=2021\)

Tick plz

 

23 tháng 11 2016

Có: \(z^2\ge0\forall z\Rightarrow z^2+4\ge4\forall z\Rightarrow\sqrt{z^2+4}\ge\sqrt{4}=2\forall z\)

\(x^{2016}+\left|y-2015\right|+\sqrt{z^2+4}=2\)

\(\Rightarrow\sqrt{z^2+4}=2\)\(\Rightarrow z^2+4=4\Rightarrow z^2=0\Rightarrow z=0\)

Lúc này ta có: x2016 + |y - 2015| = 0

\(x^{2016}\ge0;\left|y-2015\right|\ge0\forall x;y\)

nên \(\begin{cases}x^{2016}=0\\\left|y-2015\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x=0\\y-2015=0\end{cases}\)\(\Rightarrow\begin{cases}x=0\\y=2015\end{cases}\)

Vậy phương trình trên có nghiệm x = 0; y = 2015; z = 0

23 tháng 11 2016

Nghiệm nguyên nha

4 tháng 11 2018

\(x^2+y^2+z^2=xy+yz+xz\)

\(2x^2+2y^2+2z^2=2xy+2yz+2xz\)

\(2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)

\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)=0\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Vì mũ chẵn luôn lớn hơn hoặc bằng 0

\(\Rightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Rightarrow}}x=y=z\)

\(\Rightarrow x^{2015}+y^{2015}+z^{2015}=x^{2015}+x^{2015}+x^{2015}=3x^{2015}\)

\(\Rightarrow3x^{2015}=3^{2016}\)

\(\Rightarrow x^{2015}=3^{2015}\)

\(\Rightarrow x=3\)

Vậy \(x=y=z=3\)

12 tháng 12 2016

Có: \(x^2+y^2+z^2=xy+yz+xz\)

\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

\(\Leftrightarrow\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}\)\(\Leftrightarrow x=y=z\)

Lại có: \(x^{2015}+y^{2015}+z^{2015}=3^{2016}\)

\(\Leftrightarrow x^{2015}+x^{2015}+x^{2015}=3^{2016}\)

\(\Leftrightarrow3x^{2015}=3^{2016}\)

\(\Leftrightarrow x=3\)

Vậy \(x=y=z=3\)

4 tháng 10 2020

Đặt \(\sqrt{x-2014}=a;\sqrt{y-2015}=b;\sqrt{z=2016}=c\)(với a,b,c>0). Khi đó pt trở thành: 

\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)\(\Leftrightarrow\left(\frac{1}{4}-\frac{1}{a}+\frac{1}{a^2}\right)+\left(\frac{1}{4}-\frac{1}{b}+\frac{1}{b^2}\right)+\left(\frac{1}{4}-\frac{1}{c}+\frac{1}{c^2}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{2}-\frac{1}{a}\right)^2+\left(\frac{1}{2}-\frac{1}{b}\right)^2+\left(\frac{1}{2}-\frac{1}{c}\right)^2=0\Leftrightarrow a=b=c=2\)

\(\Rightarrow x=2018;y=2019;z=2020\)

4 tháng 10 2020

\(\frac{\sqrt{x-2014}-1}{x-2014}+\frac{\sqrt{y-2015}-1}{y-2015}+\frac{\sqrt{z-2016}-1}{z-2016}=\frac{3}{4}\)

\(\frac{\sqrt{x-2014}}{x-2014}+\frac{\sqrt{y-2015}}{y-2015}+\frac{\sqrt{z-2016}}{z-2016}-\left(\frac{1}{x-2014+y-2015+z-2016}\right)=\frac{3}{4}\)

\(\frac{\sqrt{x-2014}}{x-2014}+\frac{\sqrt{y-2015}}{y-2015}+\frac{\sqrt{z-2016}}{z-2016}+0=\frac{3}{4}\)

\(\frac{\sqrt{x}-\sqrt{2014}}{x-2014}+\frac{\sqrt{y}-\sqrt{2015}}{y-2015}+\frac{\sqrt{z}-\sqrt{2016}}{z-2016}=\frac{3}{4}\)

\(x=2018,y=2019,z=2020\)