K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2016

Có: \(z^2\ge0\forall z\Rightarrow z^2+4\ge4\forall z\Rightarrow\sqrt{z^2+4}\ge\sqrt{4}=2\forall z\)

\(x^{2016}+\left|y-2015\right|+\sqrt{z^2+4}=2\)

\(\Rightarrow\sqrt{z^2+4}=2\)\(\Rightarrow z^2+4=4\Rightarrow z^2=0\Rightarrow z=0\)

Lúc này ta có: x2016 + |y - 2015| = 0

\(x^{2016}\ge0;\left|y-2015\right|\ge0\forall x;y\)

nên \(\begin{cases}x^{2016}=0\\\left|y-2015\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x=0\\y-2015=0\end{cases}\)\(\Rightarrow\begin{cases}x=0\\y=2015\end{cases}\)

Vậy phương trình trên có nghiệm x = 0; y = 2015; z = 0

23 tháng 11 2016

Nghiệm nguyên nha

24 tháng 1 2017

f)

\(A=\sqrt{\frac{\left(x+1\right)}{x-3}}=\sqrt{1+\frac{4}{x-3}}\)

x-3={-4)=> x=-1

18 tháng 12 2016

khó hiểu làm sao ?

18 tháng 12 2016

Đề chỉ nhiêu đâu thôi hả

17 tháng 6 2019

\(VD3,\sqrt{x+\sqrt{x}}=y\left(x\ge0\right)\)

\(\Leftrightarrow\hept{\begin{cases}y\ge0\\x+\sqrt{x}=y^2\end{cases}}\)

Dễ thấy x phải là số chính phương

Đặt \(x=a^2\left(a\in N\right)\)

\(\Rightarrow a^2+a=y^2\)

\(\Leftrightarrow a\left(a+1\right)=y^2\)

Vì VP là số chính phương nên \(a\left(a+1\right)\)là số chính phương

Mà a và a + 1 là 2 số tự nhiên liên tiếp và a < a + 1

Nên a = 0 (tích 2 số nguyên liên tiếp là 1 scp thì phải có 1 số bằng 0 mà a < a + 1 nên a = 0)

Khi đó x = 0 ; y = 0

Vậy pt có nghiệm nguyên (x;y)=(0;0)

17 tháng 6 2019

VD1

<=> \(\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x=1\)

\(x=0;1\)không thỏa mãn

+  \(x=2\)=> \(\left(\frac{3}{5}\right)^2+\left(\frac{4}{5}\right)^2=1\)đúng

+  \(x>2\)

=> \(\left(\frac{3}{5}\right)^x< \left(\frac{3}{5}\right)^2,\left(\frac{4}{5}\right)^x< \left(\frac{4}{5}\right)^2\)

=> \(VT< 1\)(loại)

Vậy x=2

23 tháng 11 2016

Ta thấy:\(\begin{cases}x^{2016}\ge0\\\left|y-2015\right|\ge0\\\sqrt{z^2+4}\end{cases}\)

\(\Rightarrow x^{2016}+\left|y-2015\right|+\sqrt{z^2+4}\ge0\)

Để \(x^{2016}+\left|y-2015\right|+\sqrt{z^2+4}=0\)

\(\Rightarrow\begin{cases}x^{2016}=0\\\left|y-2015\right|=0\\\sqrt{z^2+4}=0\end{cases}\).Vì \(\sqrt{z^2+4}=0\Leftrightarrow z^2+4=0\), có:

\(z^2+4\ge4>0\) (loại)

Suy ra không tồn tại x,y,z thỏa mãn

 

10 tháng 2 2017

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)

Do vai trò của x,y,z là như nhau nên không mất tính tổng quát, giả sử \(x\ge y\ge z\ge1\)(nguyên dương)

\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\le\frac{1}{z}.\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}=\frac{3}{z}.\)

\(\Rightarrow z\le1\) mà    \(z\ge1\)

\(\Rightarrow z=1.\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=2-\frac{1}{1}=1\le\frac{1}{y}+\frac{1}{y}=\frac{2}{y}.\)

\(\Rightarrow y\le2\)mà   \(y\ge1\)

\(\Rightarrow y\in\left\{1;2\right\}.\)

*Nếu \(y=1\Rightarrow\frac{1}{x}=1-\frac{1}{1}=0\Rightarrow x=\frac{1}{0}\)(vô lí)

*Nếu \(y=2\Rightarrow\frac{1}{x}=2-\frac{1}{2}=\frac{1}{2}\Rightarrow x=2\)(thỏa mãn)

Vậy \(x=y=2,z=1.\)