K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 
3 tháng 12 2017

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 Đúng 3  Sai 0 Sky Blue đã chọn câu trả lời này. 
20 tháng 12 2014

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 tháng 12 2017

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm


 
10 tháng 4 2015

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

nhi tham khảo bài giải này nhé

11 tháng 11 2016

làm như Nguyễn Thị Hoa

12 tháng 4 2015

 

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

17 tháng 1 2018

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

17 tháng 5 2017

Câu 1/

\(\hept{\begin{cases}4xy=5\left(x+y\right)\\6yz=7\left(y+z\right)\\8zx=9\left(z+x\right)\end{cases}}\)

Dễ thấy \(x=y=z=0\) là 1 nghiệm của hệ 

Xét \(x,y,z\ne0\) thì ta có hệ

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{y}+\frac{1}{x}=\frac{4}{5}\\\frac{1}{z}+\frac{1}{y}=\frac{6}{7}\\\frac{1}{x}+\frac{1}{z}=\frac{8}{9}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{131}{315}\\\frac{1}{y}=\frac{121}{315}\\\frac{1}{z}=\frac{149}{315}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{315}{131}\\y=\frac{315}{121}\\z=\frac{315}{149}\end{cases}}\)

PS: Đừng đăng nhiều câu cùng lúc vì các bạn khác sẽ bỏ qua đấy b. Mỗi lần đăng 1 câu thôi

17 tháng 5 2017

i don't know

19 tháng 12 2021

a3b+ab3+2a2b2+2a+2b+1=0

<=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

 <=>(a+b+1)2=-ab(a+b)2-(a+b)2

<=>(a+b+1)2=(a+b)2(1-ab)

=> 2 TH:

*a+b=0=(1-ab).0=0 (loại)

*a+b khác 0

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ (đpcm)

Cre: mạng

31 tháng 7 2016

Ta có: 

M=1/a^2+1/b^2+1/c^2 = (a^2b^2 + b^2c^2 + c^2a^2)/a^2b^2c^2 

Bình phương 2 vế a+b+c=0 
=> a^2+b^2+c^2 = -2(ab+bc+ca) 
=> (a^2 +b^2 +c^2)^2 =4 [a^2b^2 + b^2c^2 + c^2a^2 + 2abc(a+b+c)] 
=> (a^2 +b^2 +c^2)^2/4 = a^2b^2 + b^2c^2 + c^2a^2 

=> M = [(a^2 +b^2 +c^2)/2abc]^2 

Vì a,b,c là các số hữu tỷ 
=> M là bình phương của số hữu tỷ

31 tháng 7 2016

Không hiểu bạn gửi gì liên quan đến bài này ?