A=1.2.3+3.4.5+5.6.7+...+99.100.101
B=1.2^2+2.3^2+3.4^2+4.5^2+...+99.101^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.2.3.4+2.3.4.5+3.4.5.6+...+97.98.99.100
4S=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100). 4
4S=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4S=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...98.99.100.101-97.98.99.100
4S=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98+99.100+101
4S=98.99.100.101
Vậy S = 98.99.100.101/4 = 24497550
c, 4C= (1.2.3+2.3.4+3.4.5+...+8.9.10) .4
==> 4C= [1.2.3.(4-0) + 2.3.4-(5-1) + 8.9.10.(11-7)
==>4C= 1.2.3.4 - 1.2.3.4+ 2.3.4.5-2.3.4.5 + 7.8.9.10- 7.8.9.10 + 8.9.10.11
==> 4C= 8.9.10.11=7920
==> C= 7920 :4=1980
a, Ta có: 3A= 1.2.3+2.3.3+3.4.3+...+99.100.3
3A=1.2.(3-0) + 2.3.(4-1)+ 3.4.(5-2)+ ... + 99.100.( 101-98)
3A=(1.2.3 + 2.3.4+ 3.4.5+ 99.100.101) - (0.1.2 +1.2.3+ 2.3.4 + ... + 98.99.100)
3A= 99.100.101 - 0.1.2
3A= 999900 - 0
3A= 999900
==> A= 999900 : 3
==> A= 333300
a: \(=\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{18\cdot19}-\dfrac{1}{19\cdot20}\)
=1/2-1/380
=179/380
b: \(=\dfrac{1}{1\cdot3}-\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot5}-\dfrac{1}{5\cdot7}+...+\dfrac{1}{21\cdot23}-\dfrac{1}{23\cdot25}\)
\(=\dfrac{1}{3}-\dfrac{1}{575}=\dfrac{572}{1725}\)
c: \(=1+\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}-\dfrac{1}{20}-\dfrac{1}{21}\)
=1-1/21
=20/21
d: \(=\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)\cdot...\cdot\left(1-\dfrac{1}{121}\right)\)
\(=\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{10}{11}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{12}{11}\)
\(=\dfrac{2}{11}\cdot\dfrac{12}{2}=\dfrac{12}{11}\)
A=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
A=1-1/100 A=99/100 B= (1/5.6+1/6/7+...+1/101.102).3 B=(1/5-1/6+1/6-1/7+...+1/101-1/102).3 B=(1/5-1/102).3 B=97/170
1) Tính
a) Ta có: \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)
\(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
\(3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+99\cdot100\cdot\left(101-98\right)\)
\(3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+99\cdot100\cdot101-98\cdot99\cdot100\)
\(3A=99\cdot100\cdot101\Rightarrow A=\dfrac{99\cdot100\cdot101}{3}=333300\)
\(B=1^2+2^2+3^2+...+99^2+100^2\)
\(=\dfrac{100\cdot\left(100+1\right)\cdot\left(2\cdot100+1\right)}{6}\)
\(=\dfrac{2030100}{6}=338350\)
\(C=1\cdot2\cdot3+2\cdot3\cdot4+...+8\cdot9\cdot10\)
\(4C=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot\left(5-1\right)+...+8\cdot9\cdot10\cdot\left(11-7\right)\)
\(4C=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+...+8\cdot9\cdot10\cdot11-7\cdot8\cdot9\cdot10\)
\(4C=8\cdot9\cdot10\cdot11\Rightarrow C=\dfrac{8\cdot9\cdot10\cdot11}{4}=1980\)
Ta có: A = 1.2.3+3.4.5+5.6.7+...+99.100.101
A = 1.3 (5-3) + 3.5 (7-3) + 5.7 (9-3) + ............ + 99.101 (103 - 3)
A = (1.3.5 + 3.5.7 + 5.7.9 + .......... + 99.101.103) - (1.3.3 + 3.5.3 + ....... + 99.101.3)
A = (15+99.101.103.105) : 8 - 3.(1.3 + 3.5 +5.7 + ...... + 99.101)
A = 13517400 - 3.171650
A = 13002450