K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: 

Đặt S = 1.2+2.3+3.4+...+30.31

  3 S  = 1.2.3+2.3.3+3.4.3+...+30.31.3

  3 S  = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + ...+ 30.31.(32-29)

  3S  = 1.2.3 + 2.3.4-2.3 + 3.4.5-2.3.4 + ...+ 30.31.32-29.30.31

  3S= 30.31.32 

S= 30.31.32/3

DD
3 tháng 8 2021

\(E=\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{2.3}-\frac{1}{2.3.4}+....+\frac{1}{99.100}-\frac{1}{99.100.101}\)

\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{99.100.101}\right)\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{99.100.101}\)

\(=\frac{1}{2}\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{101-99}{99.100.101}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)=\frac{5049}{20200}\)

Suy ra \(E=A-B=\frac{99}{100}-\frac{5049}{20200}=\frac{14949}{20200}\)

4 tháng 8 2021

\(\frac{14949}{20200}\)

14 tháng 6 2020

\(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{2019.2020}\)

\(\frac{1}{4}A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)

\(\frac{1}{4}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(\frac{1}{4}A=1-\frac{1}{2020}=\frac{2019}{2020}\)

\(\Rightarrow A=\frac{2019}{2020}:\frac{1}{4}=\frac{2019}{505}\)

Vậy \(A=\frac{2019}{505}.\)

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(\Rightarrow2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\)

\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(2B=\frac{1}{1.2}-\frac{1}{99.100}=\frac{4949}{9900}\)

\(\Rightarrow B=\frac{4949}{9900}:2=\frac{4949}{19800}\)

Vậy \(B=\frac{4949}{19800}.\)

14 tháng 6 2020

\(A=\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+...+\frac{4}{2019\cdot2020}\)

\(A=4\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}\right)\)

\(A=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)

\(A=4\left(1-\frac{1}{2019}\right)=4\cdot\frac{2018}{2019}\)

Đến đây tự tính

\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)

\(B=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right)\)

\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)

\(B=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{99\cdot100}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)

Số hơi bị dữ nên tính nốt nhé