Đơn giản cá biểu thức sau :
a/\(\sqrt{139-24\sqrt{5}}\)
b/\(\sqrt{12\sqrt{5}+57}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đơn giản biểu thức sau :
\(T=\left(\sqrt[7]{\frac{a}{b}\sqrt[5]{\frac{b}{a}}}\right)^{\frac{35}{4}}\)
\(T=\left(\sqrt[7]{\frac{a}{b}\sqrt[5]{\frac{b}{a}}}\right)^{\frac{35}{4}}=\left\{\left[\left(\frac{b}{a}\right)^{-1}\left(\frac{b}{a}\right)^{\frac{1}{5}}\right]^{\frac{1}{7}}\right\}^{\frac{35}{4}}=\left[\left(\frac{b}{a}\right)^{-\frac{4}{5}}\right]=\frac{a}{b}\)
\(T=\left(\sqrt[7]{\frac{a}{b}\sqrt[5]{\frac{b}{a}}}\right)^{\frac{35}{4}}=\sqrt[4]{\left(\sqrt[7]{\frac{a}{b}\sqrt[5]{\frac{b}{a}}}\right)^{35}}=\sqrt[4]{\left(\frac{a}{b}\sqrt[5]{\frac{b}{a}}\right)^5}\)
\(=\sqrt[4]{\left(\frac{a}{b}\right)^5.\frac{b}{a}}=\sqrt[4]{\left(\frac{a}{b}\right)^4}=\frac{a}{b}\)
a) \(A=\left(\sqrt{57}+3\sqrt{6}+\sqrt{38}+6\right)\left(\sqrt{57}-3\sqrt{6}-\sqrt{38}+6\right)\)\(\Leftrightarrow A=\left[\left(\sqrt{57}+6\right)+\left(3\sqrt{6}+\sqrt{38}\right)\right]\left[\left(\sqrt{57}+6\right)-\left(3\sqrt{6}+\sqrt{38}\right)\right]\)\(\Leftrightarrow A=\left(\sqrt{57}+6\right)^2-\left(3\sqrt{6}+\sqrt{38}\right)^2\)
\(\Leftrightarrow A=57+12\sqrt{57}+36-54-12\sqrt{57}-38\)
\(\Leftrightarrow A=1\)
b) \(B=\dfrac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)\(\Leftrightarrow B=\dfrac{2\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}+\sqrt{2}}\)\(\Leftrightarrow B=\dfrac{2\sqrt{3+\sqrt{5-\sqrt{1+4\sqrt{3}+\left(2\sqrt{3}\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)\(\Leftrightarrow B=\dfrac{2\sqrt{3+\sqrt{5-\sqrt{\left(1+2\sqrt{3}\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)
\(\Leftrightarrow B=\dfrac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)
\(\Leftrightarrow B=\dfrac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)
\(\Leftrightarrow B=\dfrac{2\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)
\(\Leftrightarrow B=\dfrac{\sqrt{8+4\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)
\(\Leftrightarrow B=\dfrac{\sqrt{\left(\sqrt{6}+\sqrt{2}\right)^2}}{\sqrt{6}+\sqrt{2}}\)
\(\Leftrightarrow B=\dfrac{\sqrt{6}+\sqrt{2}}{\sqrt{6}+\sqrt{2}}=1\)
c)\(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(\Leftrightarrow C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{3^2-2\times3\times2\sqrt{5}+\left(2\sqrt{5}\right)^2}}}\)
\(\Leftrightarrow C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(\Leftrightarrow C=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(\Leftrightarrow C=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(\Leftrightarrow C=\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)
A=\(\sqrt{\left(4+\sqrt{8}\right)^2}\)\(-\sqrt{\left(4-\sqrt{8}\right)^2}\)=\(4+\sqrt{8}\)\(-\left(4-\sqrt{8}\right)\)=\(2\sqrt{8}\)
Giờ mình chỉ giải đc câu a thôi để hồi nao mình rảnh giải típ cho
\(A=\log_a\left(a^2\sqrt[4]{a^3\sqrt[5]{a}}\right)=\log_a\left(a^2\sqrt[4]{a^3.a^{\frac{1}{5}}}\right)=\log_a\left[a^2\left(a^{\frac{16}{5}}\right)^{\frac{1}{4}}\right]=\log_a\left(a^2.a^{\frac{4}{5}}\right)=\frac{14}{5}\)
\(P=\sqrt{14+6\sqrt{5}}+\sqrt{14-6\sqrt{5}}\)
\(=\sqrt{3^2+6\sqrt{5}+\sqrt{5}^2}+\sqrt{3^2-6\sqrt{5}+\sqrt{5}^2}\)
\(=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}\)
\(=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|\)
\(=3+\sqrt{5}+3-\sqrt{5}\)
\(=6\)